【題目】如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過(guò)點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過(guò)點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖②,為線段外兩點(diǎn),,,垂足分別為、

點(diǎn)在上的射影是________點(diǎn),點(diǎn)在上的射影是________點(diǎn),

線段上的射影是________,線段上的射影是________;

根據(jù)射影的概念,說(shuō)明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項(xiàng).(要求:畫出圖形,寫出說(shuō)理過(guò)程.)

【答案】線段線段

【解析】

(1)由題中所給的射影的概念可直接進(jìn)行解答;

(2)先根據(jù)相似三角形的判定定理得出ACD∽△CBD,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得出結(jié)論.

(1)B,A,線段BC,線段AB;

(2)如圖,在RtABC中,∠ACB=90°,CDAB,垂足為D,(圖形正確)

AC、BCAB上的射影分別是AD、BD.(8分)

CDAB,

∴∠ADC=BDC,

∵∠B+A=90°,B+DCB=90°,

∴∠A=DCB,

∴△ACD∽△CBD,

,

CDAC,BC在斜邊上射影的比例中項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的對(duì)稱軸是,下列結(jié)論:

;②;③;④;⑤

其中正確的結(jié)論有________(填上正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1a3aa29a2a4

2)﹣m2(﹣m24(﹣m3

3)(﹣82018×(﹣0.1252017

4)(﹣a2b2ab2+(﹣9a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點(diǎn)E在線段AD上,若AF=4,F=60°.

(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)DE的長(zhǎng)度和∠EBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與X軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的斜邊上異于、的一定點(diǎn),過(guò)點(diǎn)作直線于點(diǎn),使截得的相似.已知,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)yk≠0,x0)的圖象經(jīng)過(guò)點(diǎn)A3,4),直線ACx軸交于點(diǎn)C6,0),過(guò)點(diǎn)Cx軸的垂線BC交函數(shù)yk≠0,x0)的圖象于點(diǎn)B

1)求k的值及點(diǎn)B的坐標(biāo)

2)在平面內(nèi)存在點(diǎn)D,使得以AB、C、D為頂點(diǎn)的四邊形是平行四邊形,直接寫出符合條件的所有點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,ABAC,∠BAC90°,CD平分∠ACB,BECD,垂足ECD的延長(zhǎng)線上.請(qǐng)解答下列問(wèn)題:

1)圖中與∠DBE相等的角有:   ;

2)直接寫出BECD的數(shù)量關(guān)系;

3)若ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E90°,且∠EDBC,DEAB相交于點(diǎn)F.試探究線段BEFD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案