【題目】如圖,點P是等腰RtABC外一點,把線段BP繞點B順時針旋轉90°得到線段BP',已知∠AP'B135°,P'AP'C13,則P'APB_____

【答案】

【解析】

連接APPP′,證明△ABP≌△CBP′,設P′Ax,則AP3x,表示出BP,即可求出.

解:如圖,連接APPP′,

BP繞點B順時針旋轉90°BP′

BPBP′,∠ABP+ABP′90°

又∵△ABC是等腰直角三角形,

ABBC,∠CBP′+ABP′90°,

∴∠ABP=∠CBP′,

△ABP△CBP′中,

,

∴△ABP≌△CBP′SAS),

APP′C,

P′AP′C13

AP3P′A,

△PBP′是等腰直角三角形,

∴∠BP′P45°,PP′PB,

∵∠AP′B135°

∴∠AP′P135°45°90°,

∴△APP′是直角三角形,

P′Ax,則AP3x

根據(jù)勾股定理,PP′,

PP′PB,

解得PB2x,

P′APBx2x12,

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為21.在溫室內,沿前側內墻保留3m寬的空地,其它三側內墻各保留1m寬的通道.當矩形溫室的長與寬各為多少時,蔬菜種植區(qū)域的面積是288m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知關于x的函數(shù)y=k(x﹣1)和y=(k≠0),它們在同一坐標系內的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量(件)

購進所需費用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求兩種商品每件的進價分別是多少元?

2)商場決定商品以每件50元出售,商品以每件元出售.為滿足市場需求,需購進兩種商品共件,且商品的數(shù)量不少于商品數(shù)量的倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標原點,與x軸交于點A﹣4,0).

1)求二次函數(shù)的解析式;

2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于A、B兩點,點A的坐標為(0,4),M是圓上一點,∠BMO120°,則⊙C的半徑為____,圓心C的坐標為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O.將∠COB繞點O順時針旋轉,設旋轉角為α0α90°),角的兩邊分別與BC,AB交于點M,N,連接DM,CN,MN,下列四個結論:①∠CDM=∠COM;②CNDM;③CNB≌△DMC;④AN2+CM2MN2;其中正確結論的個數(shù)是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).

1)以O點為位似中心在y軸的左側將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點的對應點B′的坐標是 C點的對應點C′的坐標是 ;

3)在BC上有一點Px,y),按(1)的方式得到的對應點P′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上,若將正方形AEFG繞點A按順時針方向旋轉,連接DG,在旋轉的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.

查看答案和解析>>

同步練習冊答案