【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:
①當(dāng)x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣ ;④4ac﹣b2>8a;
其中正確的結(jié)論是(

A.①③④
B.①②③
C.①②④
D.①②③④

【答案】B
【解析】解:①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,0),當(dāng)x>3時,y<0,故①正確;
②拋物線開口向下,故a<0,
∵x=﹣ =1,
∴2a+b=0.
∴3a+b=0+a=a<0,故②正確;
③設(shè)拋物線的解析式為y=a(x+1)(x﹣3),則y=ax2﹣2ax﹣3a,
令x=0得:y=﹣3a.
∵拋物線與y軸的交點B在(0,2)和(0,3)之間,
∴2≤﹣3a≤3.
解得:﹣1≤a≤﹣ ,故③正確;
④.∵拋物線y軸的交點B在(0,2)和(0,3)之間,
∴2≤c≤3,
由4ac﹣b2>8a得:4ac﹣8a>b2
∵a<0,
∴c﹣2<
∴c﹣2<0
∴c<2,與2≤c≤3矛盾,故④錯誤.
故選:B.
①先由拋物線的對稱性求得拋物線與x軸令一個交點的坐標為(3,0),從而可知當(dāng)x>3時,y<0;
②由拋物線開口向下可知a<0,然后根據(jù)x=﹣ =1,可知:2a+b=0,從而可知3a+b=0+a=a<0;
③設(shè)拋物線的解析式為y=a(x+1)(x﹣3),則y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.由拋物線與y軸的交點B在(0,2)和(0,3)之間,可知2≤﹣3a≤3.④由4ac﹣b2>8a得c﹣2<0與題意不符.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,EGEM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:

(1)這次測試,一共抽取了名學(xué)生;

(2)請將以上兩幅統(tǒng)計圖補充完整;(注:扇形圖補百分比,條形圖補優(yōu)秀人數(shù)與高度);

(3)若一般優(yōu)秀均被視為達標成績,該校學(xué)生有1200人,請你估計此次測試中,全校達標的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠C=90°,AB的垂直平分線MNBC于點D.

(1)如果∠CAD=20°,求∠B的度數(shù);

(2)如果∠CAB=50°,求∠CAD的度數(shù);

(3)如果∠CAD:DAB=1:2,求∠CAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊老師免費,學(xué)生按8折收費;乙方案:師生都按7.5折收費.

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時,采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時,采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組實數(shù)m是常數(shù)

1若x+y=1,求實數(shù)m的值;

2若-1≤x-y≤5,求m的取值范圍;

32的條件下,化簡:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用長度相等的小棒按一定規(guī)律擺成的一組圖案.

(1)第1個圖案中有______根小棒;第2個圖案中有__根小棒;第3個圖案中有__根小棒;

(2)第n個圖案中有多少根小棒?

(3)第25個圖案中有多少根小棒?

(4)是否存在某個符合上述規(guī)律的圖案,由2032根小棒擺成?如果有,指出是第幾個圖案;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人想共同承包一項工程,甲單獨做30天完成,乙單獨做20天完成,合同規(guī)定15天完成,若完不成視為違約,甲乙兩人經(jīng)過商量后簽訂了該合同.

(1)正常情況下,甲乙兩人能否履行該合同?為什么?

(2)現(xiàn)在兩人合作了9天,因別處有急事,必需調(diào)走1人,問兩人能否違約?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC=5,C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點DDFBC于點F,連接DE、EF.

(1)AC的長是   ,AB的長是 

(2)在D、E的運動過程中,線段EFAD的關(guān)系是否發(fā)生變化?若不變化,那么線段EFAD是何關(guān)系,并給予證明;若變化,請說明理由.

(3)當(dāng)t為何值,BEF的面積是2?

查看答案和解析>>

同步練習(xí)冊答案