【題目】某學(xué)習(xí)小組在學(xué)習(xí)了函數(shù)及函數(shù)圖象的知識(shí)后,想利用此知識(shí)來(lái)探究周長(zhǎng)一定的矩形其邊長(zhǎng)分別為多少時(shí)面積最大請(qǐng)將他們的探究過(guò)程補(bǔ)充完整。

(1)列函數(shù)表達(dá)式:若矩形的周長(zhǎng)為8,設(shè)矩形的一邊長(zhǎng)為x,面積為y,則有y=_________。

(2)上述函數(shù)表達(dá)式中,自變量x的取值范圍是____________;

(3)列表:

x

...

0.5

1

1.5

2

2.5

3

3.5

...

y

...

1.75

3

3.75

4

3.75

3

m

...

寫(xiě)出m=__________;

(4)畫(huà)圖:在平面直角坐標(biāo)系中已描出了上表中部分各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)你畫(huà)出該函數(shù)的圖象;

(5)結(jié)合圖象可得:x=_______時(shí),矩形的面積最大: 寫(xiě)出該函數(shù)的其它性質(zhì)(一條即可)_______________________________________.

【答案】1-x2+4x;(20<x<4;(31.75;(4)見(jiàn)解析;(52,當(dāng)0<x<2時(shí),yx增大而增大.

【解析】

1)根據(jù)矩形的周長(zhǎng)=2(長(zhǎng)+寬),矩形的面積=長(zhǎng)×寬,即可列出函數(shù)表達(dá)式;

2)根據(jù)y=-x2+4x-x2+4x0即可得出答案;

3)把x=3.5代入解析式計(jì)算即可得;

(4)根據(jù)表格中的坐標(biāo)描點(diǎn)畫(huà)圖即可;

5)結(jié)合圖象可得x=2時(shí),y有最大值,再根據(jù)函數(shù)的解析式及圖象寫(xiě)出一條性質(zhì)即可.

1)∵矩形的周長(zhǎng)=2(長(zhǎng)+寬),矩形的面積=長(zhǎng)×寬,

又∵矩形的周長(zhǎng)為8,面積為y,矩形的一邊長(zhǎng)為x,

∴由題意:y=x4-x=-x2+4x;

2)∵y=-x2+4x

x0,且-x2+4x0,

又∵-x2+4x0解得x0,x4,

則自變量x的取值范圍是0x4;

3x=3.5時(shí),y=1.75,

m=1.75

4)函數(shù)圖象如圖所示:

5)∵y=-x-22+4,

x=2時(shí),y有最大值,

性質(zhì):當(dāng)0x2時(shí),yx的增大而增大.(答案不唯一).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,的頂點(diǎn)坐標(biāo)分別是,對(duì)于的橫長(zhǎng)、縱長(zhǎng)、縱橫比給出如下定義:

中的最大值,稱(chēng)為的橫長(zhǎng),記作;將中的最大值,稱(chēng)為的縱長(zhǎng),記作;將叫做的縱橫比,記作

例如:如圖的三個(gè)頂點(diǎn)的坐標(biāo)分別是,則,

所以

如圖2,點(diǎn),

點(diǎn)

的縱橫比______

的縱橫比______;

點(diǎn)F在第四象限,若的縱橫比為1,寫(xiě)出一個(gè)符合條件的點(diǎn)F的坐標(biāo);

點(diǎn)M是雙曲線上一個(gè)動(dòng)點(diǎn),若的縱橫比為1,求點(diǎn)M的坐標(biāo);

如圖3,點(diǎn)為圓心,1為半徑,點(diǎn)N上一個(gè)動(dòng)點(diǎn),直接寫(xiě)出的縱橫比的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1x2,y1y2,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱(chēng)該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)PQ的“相關(guān)矩形”示意圖.

(1)已知點(diǎn)A的坐標(biāo)為(1,0),

①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)AB的“相關(guān)矩形”的面積;

②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;

(2)正方形RSKT頂點(diǎn)R的坐標(biāo)為(-1,1),K的坐標(biāo)為(2,-2),點(diǎn)M的坐標(biāo)為(m,3),若在正方形RSKT邊上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC:∠BOC21,將直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)在圖1中,∠AOC   °,∠MOC   °

2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);

3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內(nèi)部,說(shuō)明∠BON﹣∠COM的值固定不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交O于點(diǎn)G,連接EG.

(1)求證:DF是O的切線;

(2)若AD=DP,OB=3,求的長(zhǎng)度;

(3)若DE=4,AE=8,求線段EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問(wèn)題,當(dāng)?shù)卣疀Q定修建一條高速公路.其中一段長(zhǎng)為146米的山體隧道貫穿工程由甲乙兩個(gè)工程隊(duì)負(fù)責(zé)施工.甲工程隊(duì)獨(dú)立工作2天后,乙工程隊(duì)加入,兩工程隊(duì)又聯(lián)合工作了1天,這3天共掘進(jìn)26.已知甲工程隊(duì)每天比乙工程隊(duì)多掘進(jìn)2.按此速度完成這項(xiàng)隧道貫穿工程,甲乙兩個(gè)工程隊(duì)還需聯(lián)合工作__________天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的方法拼成一個(gè)邊長(zhǎng)為(mn)的正方形.

請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.

方法1   ;方法2   ;

觀察圖2寫(xiě)出,三個(gè)代數(shù)式之間的等量關(guān)系: ;

根據(jù)⑵中你發(fā)現(xiàn)的等量關(guān)系,解決如下問(wèn)題:若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使,將一塊透明的三角尺的直角頂點(diǎn)放在點(diǎn)O處,邊OM在射線OB上,邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至如圖2所示的位置,使邊OM的內(nèi)部,且恰好平分,求的度數(shù).

(2)將圖1中的三角尺繞點(diǎn)O按每秒的速度逆時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過(guò)程中,第t秒時(shí),直線ON恰好平分銳角,則t的值為_(kāi)_______(直接寫(xiě)出結(jié)果).

(3)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至如圖3所示的位置,使ON的內(nèi)部,請(qǐng)?zhí)骄?/span>之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案