【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時,m=20+x |
當21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
【答案】(1)10或28天;(2);(3)15天時,最大利潤為612.5元.
【解析】
試題分析:(1)分別把m=25代入m=20+x、求的x值即可;(2)分兩種情形寫出所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式即可.(3)分別計算兩種情況下最大值問題即可.
試題解析:(1)①當1≤x≤20時,將m=25代入m=20+ x,解得x=10;②當21≤x≤30時,,解得x=28.經(jīng)檢驗x=28是方程的解.答:第10天或第28天時該商品為25元/件.(2)①當1≤x≤20時,y=(m﹣10)n=(20+ x﹣10)(50﹣x)=﹣x2+15x+500,②當21≤x≤30時,.綜上所述:.
(3)①當1≤x≤20時,由y=﹣x2+15x+500=-(x-15)2+.∵a=<0,∴當x=15時,y最大值=,②當21≤x≤30時,由,可知y隨x的增大而減小,∴當x=21時,y最大值=580元.∴第15天時獲得利潤最大,最大利潤為612.5元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生利用雙休時間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車沿相同路線出發(fā),結(jié)果他們同時到達.已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度和汽車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+mx+m2﹣7=0的一個根是﹣2,則m的值可以是( )
A.﹣1B.3C.﹣1或3D.﹣3或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m是兩位數(shù),n是一位數(shù),把m接寫在n的后面,就成為一個三位數(shù).這個三位數(shù)可表示成( )
A. 10n + m B. nm C. 100n + m D. n + 10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)短距離賽跑,測得甲每秒跑7米,乙每秒跑6.5米,如果甲讓乙先跑2秒,那么幾秒鐘后甲可以追上乙若設(shè)x秒后甲追上乙,列出的方程應(yīng)為( )
A. 7x=6.5 B. 7x=6.5(x+2) C. 7(x+2)=6.5x D. 7(x﹣2)=6.5x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,點D為AB中點,且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為______ °
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線m上找出滿足下列條件的點P.請保留作圖痕跡,其中第(2)小題用尺規(guī)作圖.
(1)點P到A、B距離之和最小時的位置;
(2)點P到A、B距離相等時的位置;
(3)點P到A、B的距離之差最大時P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=mx+n,其中m、n是常數(shù)且滿足m+n=7,mn=12,那么該直線經(jīng)過( )
A.第一三四象限B.第二三四象限C.第一二三象限D.第一二四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com