【題目】有、、三家工廠依次坐落在一條筆直的公路邊,甲、乙兩輛運(yùn)貨卡車(chē)分別從、工廠同時(shí)出發(fā),沿公路勻速駛向工廠,最終到達(dá)工廠,設(shè)甲、乙兩輛卡車(chē)行駛后,與工廠的距離分別為、().、與函數(shù)關(guān)系如圖所示,根據(jù)圖象解答下列問(wèn)題.(提示:圖中較粗的折線表示的是與的函數(shù)關(guān)系.)
()、兩家工廠之間的距離為__________ , __________, 點(diǎn)坐標(biāo)是__________.
()求甲、乙兩車(chē)之間的距離不超過(guò)時(shí), 的取值范圍.
【答案】(1)見(jiàn)解析;(2)或.
【解析】試題分析:(1)根據(jù)y軸的最大距離為B、C兩地間的距離,再加上A、B兩地間的距離即可;先求出甲的速度,再求出到達(dá)C地的時(shí)間,然后加上0.5即為a的值;利用待定系數(shù)法求一次函數(shù)解析式求出甲從B地到C地的函數(shù)解析式,再求出乙的解析式,然后聯(lián)立求解即可得到點(diǎn)P的坐標(biāo);
(2)根據(jù)兩函數(shù)解析式列出不等式組求解即可.
試題解析:解:(1)由圖可知,A、B兩地相距30km,B、C兩地相距90km,所以,A、C兩家工廠之間的距離為30+90=120km,甲的速度為:30÷0.5=60km/h,90÷60=1.5小時(shí),∴a=0.5+1.5=2;
設(shè)甲:0.5≤x≤2時(shí)的函數(shù)解析式為y=kx+b,∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(0.5,0)、(2,90),∴,解得: ,∴y=60x﹣30,乙的速度為90÷3=30km/h,乙函數(shù)解析式為:y=30x,聯(lián)立,解得: ,所以,點(diǎn)P(1,30);
故答案為:120,2,(1,30);
(2)∵甲、乙兩車(chē)之間的距離不超過(guò)10km,∴ ,解不等式①得,x≥,解不等式②得,x≤,所以,x的取值范圍是≤x≤;
當(dāng)甲車(chē)停止后,乙行駛小時(shí)時(shí),兩車(chē)相距10km,故≤x≤3時(shí),甲、乙兩車(chē)之間的距離不超過(guò)10km.
綜上所述:x的取值范圍是≤x≤或≤x≤3甲、乙兩車(chē)之間的距離不超過(guò)10km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點(diǎn)F為線段BC上的任意一點(diǎn),當(dāng)△EFC為直角三角形時(shí),求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.一個(gè)游戲的中獎(jiǎng)概率是,則做10次這樣的游戲一定會(huì)中獎(jiǎng)
B.為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式
C.一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
D.若甲組數(shù)據(jù)的方差S2甲=0.01,乙組數(shù)據(jù)的方差S2乙=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列事件發(fā)生的概率,把A,B,C,D填入事件后的括號(hào)里.
A.發(fā)生的概率為0 B.發(fā)生的概率小于
C.發(fā)生的概率大于 D.發(fā)生的概率為1
(1)從一副撲克牌中任意抽取一張,是紅桃;( )
(2)2024年2月有29天;( )
(3)小波能舉起500 kg的大石頭;( )
(4)從5張分別寫(xiě)有數(shù)字1,2,4,6,8的卡片中任取一張,卡片上數(shù)字恰為偶數(shù).( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,坐標(biāo)原點(diǎn)O為矩形ABCD的對(duì)稱中心,頂點(diǎn)A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點(diǎn)O為位似中心,點(diǎn)A′,B′分別是點(diǎn)A,B的對(duì)應(yīng)點(diǎn),.已知關(guān)于x,y的二元一次方程(m,n是實(shí)數(shù))無(wú)解,在以m,n為坐標(biāo)(記為(m,n)的所有的點(diǎn)中,若有且只有一個(gè)點(diǎn)落在矩形A′B′C′D′的邊上,則kt的值等于( )
A. B.1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com