【題目】作圖題:(要求保留作圖痕跡,不寫作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點E,交BC于點F);

2)連結(jié)BE,若AC=10,AB=6,求△ABE的周長.

【答案】1)作圖見試題解析;(216

【解析】

試題分別以點B、C為圓心,以大于BC長為半徑畫弧,在BC的兩側(cè)兩弧分別相交于一點,作這兩點作直線即可;

根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得BE=CE,從而得到△ABE的周長等于ABAC的和,代入數(shù)據(jù)進(jìn)行計算即可.

試題解析:如圖所示,

∵EF垂直平分BC,∴BE=EC,∴△ABE的周長=AB+BE+AE=AB+BE+EC=AB+BC

∵AB=6,BC=10,∴△ABE的周長=6+10=16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時,函數(shù)圖象過點(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B在數(shù)軸上分別表示實數(shù)a、bA、B兩點之間的距離表示為AB=|ab|,回答下列問題:

(1)數(shù)軸上表示1和﹣3的兩點之間的距離是   ;

(2)數(shù)軸上表示x和﹣1的兩點分別是點AB,如果AB=2,那么x   ;

(3)互不相等的有理數(shù)a,b,c在數(shù)軸上的對應(yīng)點分別為A,BC,如果|ca|+|bc|=|ab|,那么,在點A,BC中居中的點是   

(4)當(dāng)|x+2|+|x﹣1|取最小值時,相應(yīng)的x的取值范圍是   

若|xa|+|xb|的最小值為4,若a=3,則b的值為   

式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時,求Q關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點H為垂足.設(shè)AB=x,AD=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標(biāo)原點,點B的坐標(biāo)為(4,3),點A、C在坐標(biāo)軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標(biāo);
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標(biāo);
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標(biāo)平面內(nèi)的點,且N點的橫坐標(biāo)為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“一方有難,八方支援”,雅安蘆山420地震后,某單位為一中學(xué)捐贈了一批新桌椅,學(xué)校組織初一年級200名學(xué)生搬桌椅.規(guī)定一人一次搬兩把椅子,兩人一次搬一張桌子,每人限搬一次,最多可搬桌椅(一桌一椅為一套)的套數(shù)為(
A.60
B.70
C.80
D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導(dǎo)數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=x2﹣2x﹣5,若f(g(a))≤2,則實數(shù)a的取值范圍是(
A.
B. ??
C.(﹣∞,﹣1]∪(0,3]
D.[﹣1,3]

查看答案和解析>>

同步練習(xí)冊答案