【題目】如圖,在和中,與 相交于,,.
(1)求證:;
(2)請用無刻度的直尺在下圖中作出的中點.
【答案】(1)證明見解析;(2)見解析.
【解析】
(1)由SAS證明△DAB≌△CBA,得出對應(yīng)角相等∠DBA=∠CAB,再由等角對等邊即可得出結(jié)論;
(2)延長AD和BC相交于點F,作射線FE交AB于點M,根據(jù)軸對稱的性質(zhì)可證得點M就是所求作的中點.
(1)在△ABC和≌△BAD中,
∵,
∴△ABC≌△BAD,
∴∠DBA=∠CAB,
∴AE=BE;
(2)如圖,點M就是所求作的中點.
理由是:
由(1)可知:△ABC≌△BAD,
∴∠DBA=∠CAB,∠DAB=∠CBA,
∴EA=EB,FA=FB,
∴點A、B關(guān)于直線FE對稱,
∴點M就是線段AB的中點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(﹣1,﹣2),點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當(dāng)時,則點C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點為A,過P(1,﹣m)作PM⊥x軸于點M,交拋物線于點B.點B關(guān)于拋物線對稱軸的對稱點為C.
(1)若m=2,求點A和點C的坐標(biāo);
(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;
(3)在坐標(biāo)軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示.
(1)若△ABC內(nèi)有一點P(a,b)隨著△ABC平移后到了點P′(a+4,b﹣1),直接寫出A點平移后對應(yīng)點A′的坐標(biāo).
(2)直接作出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點)
(3)求四邊形ABC′C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,,,為線段上一動點(不與點,重合),連接,作,交線段于.以下四個結(jié)論:
①;
②當(dāng)為中點時;
③當(dāng)時;
④當(dāng)為等腰三角形時.
其中正確的結(jié)論是_________(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,.動點從的頂點出發(fā),以的速度沿勻速運動回到點.圖2是點運動過程中,線段的長度隨時間變化的圖象.其中點為曲線部分的最低點.
請從下面A、B兩題中任選一作答,我選擇________題.
A.的面積是______,B.圖2中的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線與軸、軸分別交于點,,直線經(jīng)過點,并與軸交于點.
(1)求,兩點的坐標(biāo)及的值;
(2)如圖2,動點從原點出發(fā),以每秒個單位長度的速度沿軸正方向運動.過點作軸的垂線,分別交直線,于點,.設(shè)點運動的時間為.
①點的坐標(biāo)為______.點的坐標(biāo)為_______;(均用含的式子表示)
②請從下面A、B兩題中任選一題作答我選擇________題.
A.當(dāng)點在線段上時,探究是否存在某一時刻,使?若存在,求出此時的面積;若不存在說明理由.
B.點是線段上一點.當(dāng)點在射線上時,探究是否存在某一時刻使?若存在、求出此時的值,并直接寫出此時為等腰三角形時點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,在上,且,過點作射線(AN與BC在AC同側(cè)),若動點從點出發(fā),沿射線勻速運動,運動速度為/,設(shè)點運動時間為秒.
(1)經(jīng)過_______秒時,是等腰直角三角形?
(2)當(dāng)于點時,求此時的值;
(3)過點作于點,已知,請問是否存在點,使是以為腰的等腰三角形?對存在的情況,請求出t的值,對不存在的情況,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com