【題目】已知,平分,點(diǎn)、、分別是射線、、上的動(dòng)點(diǎn)(、、不與點(diǎn)重合),連接交射線于點(diǎn),設(shè).
(1)如圖1,若,則:
①的度數(shù)為
②當(dāng)時(shí), ,當(dāng)時(shí),
(2)如圖2,若,則是否存在這樣的的值,使得中有兩個(gè)想等的角?若存在,求出的值;若不存在,說明理由.
【答案】(1)①24°,②108,54;(2)存在,x=42、24、33、123.
【解析】
(1)①運(yùn)用平行線的性質(zhì)以及角平分線的定義,可得①∠ABO的度數(shù);②根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;
(2)分兩種情況進(jìn)行討論:AC在AB左側(cè),AC在AB右側(cè),分別根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.
(1)如圖1,
①∵∠MON=48°,OE平分∠MON,
∴∠AOB=∠BON=24°,
∵AB∥ON,
∴∠ABO=24°;
②當(dāng)∠BAD=∠ABD時(shí),∠BAD=24°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°24°×3=108°;
當(dāng)∠BAD=∠BDA時(shí),∵∠ABO=24°,
∴∠BAD=78°,∠AOB=24°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°24°24°78°=54°,
故答案為:①24°;②108,54;
(2)如圖2,存在這樣的x的值,使得△ADB中有兩個(gè)相等的角.
∵AB⊥OM,∠MON=48°,OE平分∠MON,
∴∠AOB=24°,∠ABO=66°,
①當(dāng)AC在AB左側(cè)時(shí):
若∠BAD=∠ABD=66°,則∠OAC=90°66°=24°;
若∠BAD=∠BDA=(180°66°)=57°,則∠OAC=90°57°=33°;
若∠ADB=∠ABD=66°,則∠BAD=48°,故∠OAC=90°48°=42°;
②當(dāng)AC在AB右側(cè)時(shí):
∵∠ABE=114°,且三角形的內(nèi)角和為180°,
∴只有∠BAD=∠BDA=(180°114°)=33°,則∠OAC=90°+33°=123°.
綜上所述,當(dāng)x=24、33、42、123時(shí),△ADB中有兩個(gè)相等的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三面小旗,分別為紅、黃、藍(lán)三種顏色.
⑴.把三面小旗從左到右排列,紅色小旗在最左端的概率是多少?
⑵.黃色小旗排在藍(lán)色小旗前的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B在⊙O的直徑AC的延長線上,點(diǎn)D在⊙O上,AD=DB,∠B=30°,若⊙O的半徑為4.
(1)求證:BD是⊙O的切線;
(2)求CB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,在對(duì)角線上取不同的兩點(diǎn)(點(diǎn)B、E、F、D依次排列),下列條件中,能得出四邊形一定為平行四邊形的是_____________.(A. BE=DF;B. AE=CF C. AE∥CF;D. ∠BAE=∠DCF)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-2,0和1,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q在x軸上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用代入法解方程組較簡單的解法步驟是:先把方程___變形為__________,再代入方程__________,求得__________的值,然后再求___________的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點(diǎn)D,E分別是AB,AC的中點(diǎn),點(diǎn)G,F在BC邊上(均不與端點(diǎn)重合),DG∥EF.將△BDG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)180°,將△CEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快、慢兩車分別從相距480千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時(shí),然后以原速度繼續(xù)向甲地行駛,到達(dá)甲地后停止行駛;快車到達(dá)乙地后,立即按原路原速返回甲地,(快車掉頭的時(shí)間忽略不計(jì)),快、慢兩車距乙地的路程y(千米)與所用時(shí)間x(小時(shí))之間的函數(shù)圖象如圖.快車到達(dá)甲地時(shí),慢車距離甲地__米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點(diǎn)A,B.小宇同學(xué)利用尺規(guī)按以下步驟作圖:①以點(diǎn)A為圓心,以任意長為半徑作弧交AN于點(diǎn)C,交AB于點(diǎn)D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內(nèi)交于點(diǎn)E;③作射線AE交PQ于點(diǎn)F.若AB=2,∠ABP=60°,則線段AF的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com