【題目】如果點D、E,F分別在△ABC的邊AB、BC,AC上,聯(lián)結(jié)DE、EF,且DE∥AC,那么下列說法錯誤的是( )
A.如果EF∥AB,那么AF:AC=BD:AB
B.如果AD:AB=CF:AC,那么EF∥AB
C.如果△EFC∽△ABC,那么 EF∥AB
D.如果EF∥AB,那么△EFC∽△BDE
【答案】C
【解析】
由平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)得出選項A不符合題意;由平行線分線段成比例定理和已知條件得出選項B不符合題意;由相似三角形的性質(zhì)得出EF與AB不平行,選項C符合題意;由平行線的性質(zhì)和相似三角形的判定得出選項D不符合題意;即可得出答案.
解:如圖所示:
A、∵DE∥AC,EF∥AB,∴四邊形ADEF是平行四邊形,△BDE∽△BAC,∴DE=AF,,∴AF:AC=BD:AB;選項A不符合題意;
B、∵DE∥AC,∴AD:AB=CE:BC,∵AD:AB=CF:AC,∴CE:BC=CF:AC,∴EF∥AB,選項B不符合題意;
C、∵△EFC∽△ABC,∴∠CFE=∠CBA,∴EF與AB不平行,選項C符合題意;
D、∵DE∥AC,EF∥AB,∴∠C=∠BED,∠CEF=∠B,∴△EFC∽△BDE,選項D不符合題意;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上
B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的
C.“367人中至少有2人生日相同”是必然事件
D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A、B、C坐標(biāo)分別為(0,1)、(0,5)、(3,0),D是平面內(nèi)一點,且∠ADB=45°,則線段CD的最大值是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中裝有4張卡片,分別印有數(shù)字1、2、3、6,這4張卡片除印有的數(shù)字不同外,其余都相同.
(1)攪勻后從中任意摸出1張卡片,摸到印有奇數(shù)卡片的概率為_______;
(2)攪勻后從中任意摸出1張卡片,將該卡片印有的數(shù)字記為,再從剩余3張卡片中任意摸出1張卡片,將該卡片印有的數(shù)字記為,請用列表或畫樹狀圖的方法求出點在反比例函數(shù)圖像上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題 :如圖1,在四邊形中,點為上一點,∠=∠=∠=90°,求證:.
(2)探究:如圖2,在四邊形中,點為上一點,當(dāng)∠=∠=∠時,上述結(jié)論是否依然成立?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點.二次函數(shù)的圖像經(jīng)過點,與軸交于點,與一次函數(shù)的圖像交于另一點.
(1)求二次函數(shù)的表達式;
(2)當(dāng)時,直接寫出的取值范圍;
(3)平移,使點的對應(yīng)點落在二次函數(shù)第四象限的圖像上,點的對應(yīng)點落在直線上,求此時點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com