【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉變換探究活動.如圖1,在矩形紙片ABCD和矩形紙片EFGH中,AB=1,AD=2,且EF>AD,F(xiàn)G>AB,點E是AD的中點,矩形紙片EFGH以點E為旋轉中心進行逆時針旋轉,在旋轉過程中會產生怎樣的數(shù)量關系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.

(1)“奮進”小組提出的問題是:如圖1,當EF與AB相交于點M,EH與BC相交于點N時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當AM=CN時,AM與BM有怎樣的數(shù)量關系,說明理由.
(3)“創(chuàng)新”小組提出的問題是;若矩形EFGH繼續(xù)以點E為旋轉中心進行逆時針旋轉,當∠AEF=60°時,請你在圖2中畫出旋轉后的示意圖,并求出此時EF將邊BC分成的兩條線段的長度.

【答案】
(1)

解:如圖1,過點E作EP⊥BC,垂足為點P,

則四邊形ABPE是矩形,

∴PE=AB=1,∠AEP=90°,

∵點E是AD的中點,

∴AE=DE= AD=1,

∴PE=AE,

∵∠MEN=∠AEP=90°,

∴∠MEN﹣∠MEP=∠AEP﹣∠MEP,

∴∠PEN=∠AEM,

∵PE=AE,∠EPN=∠EAM=90°,

∴△PEN≌△AEM,

∴EM=EN


(2)

解:由(1)知,△PEN≌△AEM,

∴AM=PN,

∵AM=CN,

∴PN=CN= PC,

∵四邊形EPCD是矩形,

∴PC=DE=1,PN=CN= ,

∴AM=PN= ,BM=AB﹣AM= ,

∴AM=BM


(3)

解:如圖2,

當∠AEF=60°時,

設EF與BC交于M,EH與CD交于N,過點E作EP⊥BC于P,連接EC,

由(1)知,CP=EP=1,AD∥BC,

∴∠EMP=∠AEF=60°,

在Rt△PEM中,PM= = ,

∴BM=BP﹣PM=1﹣ ,CM=PC+PM=1+ ,

∴EF將邊BC分成的兩條線段的長度為1﹣ ,1+


【解析】(1)先判斷出PE=AE,再判斷出∠PEN=∠AEM,進而得到△PEN≌△AEM,即可得出結論;(2)先判斷出PN=CN= PC,進而求出PN=CN= ,再判斷出AM=PN,即可得出BM= ,結論得證;(3)在直角三角形PEM中,求出PM,再用線段的和差即可得出結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】求值:

(1)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.

(2)已知實數(shù)a、b滿足(a﹣2)2+=0,求b﹣a的算術平方根

(3)已知y=,求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實數(shù)m的值為(
A.﹣
B.
C.2或
D.2或

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,表示一次函數(shù)y=ax+b與正比例函數(shù)y=abx(a,b是常數(shù),且ab≠0)的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西綿山是中國歷史文化名山,因春秋時期晉國介子推攜母隱居于此被焚而著稱,如圖1,是綿山上介子推母子的塑像,某游客計劃測量這座塑像的高度,由于游客無法直接到達塑像底部,因此該游客計劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當從A處沿坡面行走10米到達P處時,測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側傾器高度忽略不計,結果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié),在大明湖舉行第七屆會民健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所劃行的路程y(m)與時間x(min)之間的函數(shù)關系如圖所示,下列說法,其中正確的有( 。

乙隊比甲隊提前0.25min到達終點;

0.5min后,乙隊比甲隊每分鐘快40m;

當乙隊劃行110m時,此時落后甲隊15m;

自1.5min開始,甲隊若要與乙隊同時到達終點,甲隊的速度需要提高到260m/min.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2014年3月份在某醫(yī)院出生的20名新生嬰兒的體重如下(單位:kg)
4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.5
3.6 4.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7

(1)求這組數(shù)據(jù)的極差;
(2)若以0.4kg為組距,對這組數(shù)據(jù)進行分組,制作了如下的“某醫(yī)院2014年3月份20名新生嬰兒體重的頻數(shù)分布表”(部分空格未填),請在頻數(shù)分布表的空格中填寫相關的量
某醫(yī)院2014年3月份20名新生兒體重的頻數(shù)分布表

組別(kg)

劃記

頻數(shù)

3.55﹣3.95

正一

6

合計

20


(3)經檢測,這20名嬰兒的血型的扇形統(tǒng)計圖如圖所示(不完整),求:
①這20名嬰兒中是A型血的人數(shù);
②表示O型血的扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點A,B,C都在半徑為r的圓上,直線AD⊥直線BC,垂足為D,直線BE⊥直線AC,垂足為E,直線AD與BE相交于點H.若BH= AC,則∠ABC所對的弧長等于(長度單位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的兩個頂點A,B的坐標分別為(﹣2,0),(﹣1,0),BC⊥x軸,將△ABC以y軸為對稱軸作軸對稱變換,得到△A′B′C′(A和A′,B和B′,C和C′分別是對應頂點),直線y=x+b經過點A,C′,則點C′的坐標是

查看答案和解析>>

同步練習冊答案