【題目】如圖,一張三角形紙片ABC,其中∠C=90°,AC=6,BC=8.小靜同學將紙片做兩次折疊:第一次使點A落在C處,折痕記為m;然后將紙片展平做第二次折疊,使點A落在B處,折痕記為n.則m,n的大小關(guān)系是 .
【答案】m>n
【解析】解:如圖所示:
由折疊的性質(zhì)得:DE是線段AC的垂直平分線,
∴DE是△ABC的中位線,
∴m=DE= BC=4;
∵∠C=90°,AC=6,BC=8,
∴AB= =10,
由折疊的性質(zhì)得:AD=BD= AB=5,∠BDF=90°,
∵∠B=∠B,
∴△BDF∽△BCA,
∴ ,即 ,
解得:DF= ,即n= ,
∴m>n;
所以答案是:m>n.
【考點精析】通過靈活運用翻折變換(折疊問題),掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.
(1)當∠BEF=45°時,求證:CF=AE;
(2)當B′D=B′C時,求BF的長;
(3)求△CB′F周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形 ABCD 的面積為 16,△ABE 是等邊三角形,點 E 在正方形 ABCD 內(nèi),在對角線 AC 上有一點 P,使 PD+PE 的和最小,則這個最小值為_____________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如果AB∥CD,∠B=37°,∠D=37°,那么BC與DE平行嗎?完成下面解答過中的填空或填寫理由.
解:∵AB∥CD ( 已知),
∴∠B= ( )
∵∠B=∠D=37°(已知)
∴ =∠D (等量代換)
∴BC∥DE ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 在數(shù)學課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形.求作:菱形AECF,使點E,F(xiàn)分別在BC,AD上.
小凱的作法如下:
(i)連接AC;
(ii)作AC的垂直平分線EF分別交BC,AD于E,F(xiàn);
(iii)連接AE,CF.
所以四邊形AECF是菱形.
老師說:“小凱的作法正確.”
請回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1為北京城市女生從出生到15歲的平均身高統(tǒng)計圖,圖2是北京城市某女生從出生到12歲的身高統(tǒng)計圖.
請你根據(jù)以上信息預(yù)測該女生15歲時的身高約為 , 你的預(yù)測理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角板是學習數(shù)學的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形紙片ABCD沿折痕EF對折,使點C與點A重合,點D落在點G處,如果此時∠BAF剛好等于30°,AD=6,求△AEF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com