【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

【答案】A
【解析】解:∵開機(jī)加熱時(shí)每分鐘上升10℃,
∴從30℃到100℃需要7分鐘,
設(shè)一次函數(shù)關(guān)系式為:y=k1x+b,
將(0,30),(7,100)代入y=k1x+b得k1=10,b=30
∴y=10x+30(0≤x≤7),令y=50,解得x=2;
設(shè)反比例函數(shù)關(guān)系式為:y= ,
將(7,100)代入y= 得k=700,∴y=
將y=30代入y= ,解得x= ;
∴y= (7≤x≤ ),令y=50,解得x=14.
所以,飲水機(jī)的一個(gè)循環(huán)周期為 分鐘.每一個(gè)循環(huán)周期內(nèi),在0≤x≤2及14≤x≤ 時(shí)間段內(nèi),水溫不超過50℃.
逐一分析如下:
選項(xiàng)A:7:20至8:45之間有85分鐘.85﹣ ×3=15,位于14≤x≤ 時(shí)間段內(nèi),故可行;
選項(xiàng)B:7:30至8:45之間有75分鐘.75﹣ ×3=5,不在0≤x≤2及14≤x≤ 時(shí)間段內(nèi),故不可行;
選項(xiàng)C:7:45至8:45之間有60分鐘.60﹣ ×2= ≈13.3,不在0≤x≤2及14≤x≤ 時(shí)間段內(nèi),故不可行;
選項(xiàng)D:7:50至8:45之間有55分鐘.55﹣ ×2= ≈8.3,不在0≤x≤2及14≤x≤ 時(shí)間段內(nèi),故不可行.
綜上所述,四個(gè)選項(xiàng)中,唯有7:20符合題意.
故選:A.

第1步:求出兩個(gè)函數(shù)的解析式;第2步:求出飲水機(jī)完成一個(gè)循環(huán)周期所需要的時(shí)間;第3步:求出每一個(gè)循環(huán)周期內(nèi),水溫不超過50℃的時(shí)間段;第4步:結(jié)合4個(gè)選擇項(xiàng),逐一進(jìn)行分析計(jì)算,得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一條12個(gè)單位長度的線段分成三條線段,其中一條線段成為4個(gè)單位長度,另兩條線段長都是單位長度的整數(shù)倍.

(1)不同分段得到的三條線段能組成多少個(gè)不全等的三角形?用直尺和圓規(guī)作這些三角形(用給定的單位長度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦八年級學(xué)生數(shù)學(xué)素養(yǎng)大賽,比賽共設(shè)四個(gè)項(xiàng)目:七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,魔方復(fù)原,每個(gè)項(xiàng)目得分都按一定百分比折算后記入總分,下表為甲,乙,丙三位同學(xué)得分情況(單位:分)

七巧板拼圖

趣題巧解

數(shù)學(xué)應(yīng)用

魔方復(fù)原

66

89

86

68

66

60

80

68

66

80

90

68


(1)比賽后,甲猜測七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,魔方復(fù)原這四個(gè)項(xiàng)目得分分別按10%,40%,20%,30%折算記入總分,根據(jù)猜測,求出甲的總分;
(2)本次大賽組委會最后決定,總分為80分以上(包含80分)的學(xué)生獲一等獎(jiǎng),現(xiàn)獲悉乙,丙的總分分別是70分,80分.甲的七巧板拼圖、魔方復(fù)原兩項(xiàng)得分折算后的分?jǐn)?shù)和是20分,問甲能否獲得這次比賽的一等獎(jiǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠B=120°,點(diǎn)MAD的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),沿A→B→C→D作勻速運(yùn)動,到達(dá)點(diǎn)D停止,則APM的面積y與點(diǎn)P經(jīng)過的路程x之間的函數(shù)關(guān)系的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教師運(yùn)動會中,甲,乙兩組教師參加“兩人背夾球”往返跑比賽,即:每組兩名教師用背部夾著球跑完規(guī)定的路程,若途中球掉下時(shí)須撿起并回到掉球處繼續(xù)賽跑,用時(shí)少者勝.若距起點(diǎn)的距離用y(米)表示,時(shí)間用x(秒)表示.下圖表示兩組教師比賽過程中yx的函數(shù)關(guān)系的圖象.根據(jù)圖象,有以下四個(gè)推斷:

①乙組教師獲勝

②乙組教師往返用時(shí)相差2秒

③甲組教師去時(shí)速度為0.5米/秒

④返回時(shí)甲組教師與乙組教師的速度比是2:3

其中合理的是( )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,二次函數(shù)y=ax2﹣a(b﹣1)x﹣ab(其中b<﹣1)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,1),過點(diǎn)C的直線交x軸于點(diǎn)D(2,0),交拋物線于另一點(diǎn)E.

(1)用b的代數(shù)式表示a,則a=;
(2)過點(diǎn)A作直線CD的垂線AH,垂足為點(diǎn)H.若點(diǎn)H恰好在拋物線的對稱軸上,求該二次函數(shù)的表達(dá)式;
(3)如圖②,在(2)的條件下,點(diǎn)P是x軸負(fù)半軸上的一個(gè)動點(diǎn),OP=m.在點(diǎn)P左側(cè)的x軸上取點(diǎn)F,使PF=1.過點(diǎn)P作PQ⊥x軸,交線段CE于點(diǎn)Q,延長線段PQ到點(diǎn)G,連接EG、DG.若tan∠GDP=tan∠FQP+tan∠QDP,試判斷是否存在m的值,使△FPQ的面積和△EGQ的面積相等?若存在求出m的值,若不存在則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1 , 第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,第n次平移將矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長.
(2)若ABn的長為56,求n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年5月7日浙江省11個(gè)城市的空氣質(zhì)量指數(shù)(AQI)如圖所示:
(1)這11個(gè)城市當(dāng)天的空氣質(zhì)量指數(shù)的極差、眾數(shù)和中位數(shù)分別是多少?
(2)當(dāng)0≤AQI≤50時(shí),空氣質(zhì)量為優(yōu).求這11個(gè)城市當(dāng)天的空氣質(zhì)量為優(yōu)的頻率;
(3)求寧波、嘉興、舟山、紹興、臺州五個(gè)城市當(dāng)天的空氣質(zhì)量指數(shù)的平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案