【題目】學校與圖書館在同一條筆直道路上。甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地。兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示。

1)當____________分鐘時甲、乙兩人相遇,乙的速度為__________米/分鐘,點的坐標為_____________;

2)求出甲、乙兩人相遇后之間的函數(shù)關(guān)系式;

3)當乙到達距學校800米處時,求甲、乙兩人之間的距離。

【答案】120,80,;(2;(3)甲、乙兩人之間的距離為700米.

【解析】

1)由圖象知:當y=0時對應(yīng)的x的值即為甲、乙兩人相遇的時間;甲用了分鐘走了2800米,所以可求甲的速度,再根據(jù)甲乙兩人速度和是/分鐘可求出乙的速度;用乙的總路程2800米除以乙的速度即為乙從圖書館回學校的時間,即為點C的橫坐標,用點C的橫坐標乘以甲的速度即可得出點C的縱坐標;

2)分NC段和CD段兩種情況利用待定系數(shù)法求解即可;

3)先求出乙到達距學校800米處時所用的時間,再用甲乙兩人的速度和乘以這個時間減去2800米即為所求.

解:(1)當x=24分鐘時,甲、乙兩人相遇;

由圖象知:甲用了分鐘走了2800米,所以甲的速度為:/分鐘,甲乙兩人的速度和為:/分鐘,所以乙的速度是:14060=80/分鐘;

乙從圖書館回學校的時間是:2800÷80=35分鐘,35×60=2100,所以點C的坐標是.

故答案為:2080,

2)設(shè)段所求函數(shù)關(guān)系式為,

,解得

;

設(shè)段所求函數(shù)關(guān)系式為,

,解得,

,

綜上:;

3(分鐘),

時,(米),

答:甲、乙兩人之間的距離為700米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】元旦大酬賓!”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有3張相同的卡片,卡片上分別標有“10“20“30的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里摸出一張卡片,記下錢數(shù)后放回,再從中摸出一張卡片.商場根據(jù)兩張卡片所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.

1)該顧客最多可得到   元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于40元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)yx23x+2和一次函數(shù)y=﹣2x+4,把ytx23x+2+1t)(﹣2x+4)稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A2,0)和拋物線L上的點B(﹣1,n),請完成下列任務(wù):

(嘗試)

1)當t2時,拋物線ytx23x+2+1t)(﹣2x+4)的頂點坐標為   ;

2)判斷點A是否在拋物線L上;

3)求n的值;

(發(fā)現(xiàn))

通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標為   

(應(yīng)用)

二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)yx23x+2和一次函數(shù)y=﹣2x+4的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于點,.

1)若,求的值;

2)過點作與軸平行的直線,交拋物線于點,.時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知布袋中有紅、黃、藍色小球各一個,用畫樹狀圖或列表的方法求下列事件的概率.

1)如果摸出第一個球后,不放回,再摸出第二球,求摸出的球顏色是一黃一藍的概率.

2)隨機從中摸出一個小球,記錄下球的顏色后,把球放回,然后再摸出一個球,記錄下球的顏色,求得到的球顏色是一黃一藍的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在鈍角中,點上的一個動點,連接,將射線繞點逆時針旋轉(zhuǎn),交線段于點. 已知∠C=30°CA=2 cm,BC=7cm,設(shè)B,P兩點間的距離為xcm,A,D兩點間的距離ycm.

小牧根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小牧探究的過程,請補充完整:

(1)根據(jù)圖形.可以判斷此函數(shù)自變量X的取值范圍是 ;

(2)通過取點、畫圖、測量,得到了的幾組值,如下表:

0.51

1.02

1.91

3.47

3

4.16

4.47

3.97

3.22

2.42

1.66

a

2.02

2.50

通過測量。可以得到a的值為 ;

(3)在平而直角坐標系xOy.描出上表中以各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

(4)結(jié)合畫出的函數(shù)圖象,解決問題:AD=3.5cm時,BP的長度約為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在圓心角為的扇形中,半徑,以為直徑作半圓.過點的平行線交兩弧分別于點,則圖中陰影部分的面積是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A、B的坐標分別為A8,0)和B0,6),點Px軸負半軸上的一個動點,畫ABP的外接圓,圓心為M,連結(jié)BM并延長交圓于點C,連結(jié)CP.

1)求證:.OBP=ABC

2)當的直徑為14時,求點P的坐標.

3)如圖2,連結(jié)OC,求OC的最小值和OC達到最小值時ABP的外接圓圓心M的坐標.

查看答案和解析>>

同步練習冊答案