【題目】(12分)已知,在平面直角坐標系中,AB⊥x軸于點B,點A(a,b)滿足+|b-2|=0,平移線段AB使點A與原點重合,點B的對應點為點C.
(1)則a=____,b=____;點C坐標為________;
(2)如下圖所示:點D(m, n)在線段BC上,求m、n滿足的關(guān)系式;
(3)如下圖所示:E是線段OB上一動點,以OB為邊作∠G=∠AOB,,交BC于點G,連CE交OG于點F,的當點E在線段OB上運動過程中, 的值是否會發(fā)生變化?若變化請說明理由,若不變,請求出其值.
【答案】 (1)4 2 (0,-2);(2)m-2n=4;(3)不變, 理由見解析.
【解析】(1)a= 4 ;b= 2 ;點C的坐標為(0,-2).
(2)如圖1,過點D分別作DM⊥x軸于點M, DN⊥y軸于點N,連接OD.
∵AB⊥ x軸于點B,且點A,D,C三點的坐標分別為:(4,2),(m,n),(0,-2)
∴OB=4,OC=2,MD=-n,ND=m
∴ S△BOC= OB×OC=4
又∵S△BOC = S△BOD+S△COD
= OB×MD+OC×ND
=×4×(-n)+×m×2
=m-2n
∴m-2n=4…………(7分)
(3)解: 的值不變,值為2.理由如下:
如圖所示:分別過點E,F作EP∥OA, FQ∥OA分別交y軸于點P,點Q
∵線段OC是由線段AB平移得到
∴BC∥OA 又∵EP∥OA
∴EP∥BC
∴∠GCF=∠PEC
∵EP∥OA
∴∠AOE=∠OEP
∴∠OEC=∠OEP+∠PEC
=∠AOE+∠GCF 同理:∠OFC=∠AOF+∠GCF…………(10分)
又∵∠AOB=∠BOG
∴∠OFC=2∠AOE+∠GCF
∴
=2
科目:初中數(shù)學 來源: 題型:
【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( 。
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點D是△ABC所在平面內(nèi)一點,連接AD、CD.
(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關(guān)系并證明;
(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:(1)a<O;(2)b2﹣4ac<0;(3)b>O;(4)a+b+c>0;(5)a﹣b+c>0.你認為其中正確信息的個數(shù)有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種新運算“a☆b”的含義為:當a≥b時,a☆b=a+b;當a<b時,a☆b=a-b.例如:3☆(-4)=3+(-4)=-1,(-6)☆=-6-=-6.
(1)填空:(-4)☆3=______;
(2)如果(3x-4)☆(2x+8)=(3x-4)-(2x+8),求x的取值范圍;
(3)如果(3x-7)☆(3-2x)=2,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如,).已知智慧數(shù)按從小到大的順序構(gòu)成如下數(shù)列:則第個智慧數(shù)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com