【題目】如右圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將ABC向左平移2格,再向上平移4格.

1)請(qǐng)?jiān)趫D中畫(huà)出平移后的ABC,

2)再在圖中畫(huà)出ABC的高CD,

3)在右圖中能使SABC=SPBC的格點(diǎn)P的個(gè)數(shù)有 個(gè)(點(diǎn)P異于A)

【答案】見(jiàn)解析

【解析】整體分析:

(1)根據(jù)平移的要求畫(huà)出ABC;(2)延長(zhǎng)AB,過(guò)點(diǎn)CAB延長(zhǎng)線(xiàn)的垂線(xiàn)段;(3)過(guò)點(diǎn)ABC的平行線(xiàn),這條平行線(xiàn)上的格點(diǎn)數(shù)(異于點(diǎn)A)即為結(jié)果.

:(1)如下圖所示

(2)如上圖所示.

(3)如下圖,過(guò)點(diǎn)ABC的平行線(xiàn),這條平行線(xiàn)上的格點(diǎn)數(shù)除點(diǎn)A外有4個(gè),所以能使SABC=SPBC的格點(diǎn)P的個(gè)數(shù)有4個(gè),故答案為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m
1)求地基的中心到邊緣的距離;
2己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖①,在△ABC中,∠ACB=2∠B,AD為∠BAC的角平分線(xiàn),

求證:AB=AC+CD

小明同學(xué)經(jīng)過(guò)思考,得到如下解題思路:

AB上截取AE=AC,連接DE,得到△ADE≌△ADC,從而易證AB=AC+CD

(1)請(qǐng)你根據(jù)以上解思路寫(xiě)出證明過(guò)程;

(2)如圖②,若AD為△ABC的外角∠CAE平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,

∠D=25°,其他條件不變,求∠B的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GFACF,交AC的平行線(xiàn)BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①CACBCDCE,ACBDCEα,AD,BE相交于點(diǎn)M,連接CM.

(1)求證:BEAD;

(2)用含α的式子表示∠AMB的度數(shù);

(3)當(dāng)α90°時(shí),取ADBE的中點(diǎn)分別為點(diǎn)P,Q,連接CP,CQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(a23·a2-2ab+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.

(1)若拋物線(xiàn)的頂點(diǎn)為D,求S△ABC:S△ACD的值;

(2)若ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一種商品,在一段時(shí)間內(nèi),該商品的銷(xiāo)售量y(千克)與每千克的銷(xiāo)售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系(如圖所示),其中30≤x≤80.

1)求y關(guān)于x的函數(shù)解析式;

2)若該種商品每千克的成本為30元,當(dāng)每千克的銷(xiāo)售價(jià)為多少元時(shí),獲得的利潤(rùn)為600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直線(xiàn)l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案