【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AC于點(diǎn)D,交AB于點(diǎn)E,CD=2,則AC等于( )
A. 4 B. 5 C. 6 D. 8
【答案】C
【解析】
連接BD,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得BD=AD,再根據(jù)等邊對等角求出∠ABD=∠A=30°,然后求出∠CBD=30°,然后根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等求出DE=CD,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AD,即可得解.
連接BD,
∵DE是AB的垂直平分線,
∴BD=AD,
∴∠ABD=∠A=30°,
∴∠CBD=180°-90°-30°×2=30°,
∴∠CBD=∠ABD,
∴DE=CD=2,
又∵∠C=90°,∠A=30°,
∴AD=2DE=2×2=4,
∴AC=AD+CD=4+2=6.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)D,過點(diǎn)B作BC的垂線,交對稱軸于點(diǎn)E.
(1)求證:點(diǎn)E與點(diǎn)D關(guān)于x軸對稱;
(2)點(diǎn)P為第四象限內(nèi)的拋物線上的一動(dòng)點(diǎn),當(dāng)△PAE的面積最大時(shí),在對稱軸上找一點(diǎn)M,在y軸上找一點(diǎn)N,使得OM+MN+NP最小,求此時(shí)點(diǎn)M的坐標(biāo)及OM+MN+NP的最小值;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)D在射線AD上移動(dòng),點(diǎn)D平移后的對應(yīng)點(diǎn)為D′,點(diǎn)A的對應(yīng)點(diǎn)A′,設(shè)拋物線的對稱軸與x軸交于點(diǎn)F,將△FBC沿BC翻折,使點(diǎn)F落在點(diǎn)F′處,在平面內(nèi)找一點(diǎn)G,若以F′、G、D′、A′為頂點(diǎn)的四邊形為菱形,求平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,8),點(diǎn)B(6,8).
(1)只用直尺(沒有刻度)和圓規(guī),求作一個(gè)點(diǎn)P,使點(diǎn)P同時(shí)滿足下列兩個(gè)條件(要求保留作圖痕跡,不必寫出作法):
①點(diǎn)P到A,B兩點(diǎn)的距離相等;
②點(diǎn)P到∠xOy的兩邊的距離相等.
(2)在(1)作出點(diǎn)P后,寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)拓展課上,小林發(fā)現(xiàn)折疊長方形紙片ABCD可以進(jìn)行如下操作:①把△ABF翻折,點(diǎn)B落在CD邊上的點(diǎn)E處,折痕為AF,點(diǎn)F在BC邊上;②把△ADH翻折,點(diǎn)D落在AE邊上的點(diǎn)G處,折痕為AH,點(diǎn)H在CD邊上.若AD=6,AB=則∠HAF=___,GE=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,一天上午6點(diǎn)鐘,言老師從學(xué)校出發(fā),乘車上市里開會(huì),8點(diǎn)準(zhǔn)時(shí)到會(huì)場,中午12點(diǎn)鐘回到學(xué)校,他這一段時(shí)間內(nèi)的行程s(km)(即離開學(xué)校的距離)與時(shí)間(時(shí))的關(guān)系可用圖中的折線表示,根據(jù)圖中提供的有關(guān)信息,解答下列問題:
(1)開會(huì)地點(diǎn)離學(xué)校多遠(yuǎn)?
(2)請你用一段簡短的話,對言老師從上午6點(diǎn)到中午12點(diǎn)的活動(dòng)情況進(jìn)行描述.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=a,BC=b(a>2b),點(diǎn)P在邊CD上,且PC=BC,長方形ABCD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后得到長方形A'B'C'D'(點(diǎn)B'、C'落在邊AB上),請用a、b的代數(shù)式分別表示下列圖形的面積.
(1)三角形PCC'的面積S1;
(2)四邊形AA'CC'的面積S,并化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+4與x軸交于點(diǎn)A,過點(diǎn)A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.
(1)求a,b的值;
(2)點(diǎn)P是線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OB交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,過點(diǎn)P作PF⊥MC于點(diǎn)F,設(shè)PF的長為t,MN的長為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)S△ACN=S△PMN時(shí),連接ON,點(diǎn)Q在線段BP上,過點(diǎn)Q作QR∥MN交ON于點(diǎn)R,連接MQ、BR,當(dāng)∠MQR﹣∠BRN=45°時(shí),求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,過C點(diǎn)的切線與AB的延長線交于P點(diǎn),若∠P=40°,則∠D的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com