【題目】在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y2(x+1)21的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標(biāo)是( )

A. (1,1)B. (1,﹣2)C. (2,﹣2)D. (1,﹣1)

【答案】B

【解析】

先求出原函數(shù)的頂點坐標(biāo),再按照要求移動即可.

解:函數(shù)y2(x+1)21的頂點坐標(biāo)為(1,﹣1),

(1,﹣1)沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度后對應(yīng)點的坐標(biāo)為(1,﹣2),

即平移后拋物線的頂點坐標(biāo)是(1,﹣2)

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x+m)(x+n)=x2 -6x+5,則( 。
A.m , n同時為負
B.mn同時為正
C.m , n異 號
D.m , n異號且絕對值小 的為正

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作與探究:

(1)對數(shù)軸上的點P進行如下操作:先把點P表示的數(shù)乘以,再把所得數(shù)對應(yīng)的點向右平移1個單位,得到點P的對應(yīng)點P′.

點A,B在數(shù)軸上,對線段AB上的每個點進行上述操作后得到線段A′B′,其中點A,B的對應(yīng)點分別為A′,B′.如圖1,若點A表示的數(shù)是﹣3,則點A′表示的數(shù)是   ;若點B′表示的數(shù)是2,則點B表示的數(shù)是   ;已知線段AB上的點E經(jīng)過上述操作后得到的對應(yīng)點E′與點E重合,則點E表示的數(shù)是   

(2)如圖2,在平面直角坐標(biāo)系xOy中,對正方形ABCD及其內(nèi)部的每個點進行如下操作:把每個點的橫、縱坐標(biāo)都乘以同一個實數(shù)a,將得到的點先向右平移m個單位,再向上平移n個單位(m>0,n>0),得到正方形A′B′C′D′及其內(nèi)部的點,其中點A,B的對應(yīng)點分別為A′,B′.已知正方形ABCD內(nèi)部的一個點F經(jīng)過上述操作后得到的對應(yīng)點F′與點F重合,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, PQCA的垂直平分線, CFABPQ于點F,連接AF

1)求證:AED≌△CFD;

2)求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生的身高情況,隨機抽取部分學(xué)生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表: 頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計

100%

1)填空:a=  ,b=  

2)補全頻數(shù)分布直方圖;

3)該校九年級共有600名學(xué)生,估計身高不低于165cm的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;

(2)求、與x的函數(shù)表達式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若整式3x54x5的和為35,則x________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)

(2)20132﹣2012×2014(簡便計算)

(3)(3a23+a2a4﹣a8÷a2

(4)(x﹣2)(3x﹣1)

(5)(x﹣1)(x+1)﹣(x+2)2

(6)(a+3b﹣2c)(a﹣3b﹣2c)

(7)(m﹣2n+1)2

(8)(2a﹣3b)2(2a+3b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.

(1)幾秒后PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)

(2)幾秒后以A、BP、Q為頂點的四邊形的面積為22cm2

查看答案和解析>>

同步練習(xí)冊答案