【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示 的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
【答案】
(1)
證明:由對(duì)稱得AE=FE,∴∠EAF=∠EFA,
∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,
∴∠FGA=∠EFG,∴EG=EF.
∴AE=EG.
(2)
解:設(shè)AE=a,則AD=na,
當(dāng)點(diǎn)F落在AC上時(shí)(如圖1),
由對(duì)稱得BE⊥AF,
∴∠ABE+∠BAC=90°,
∵∠DAC+∠BAC=90°,
∴∠ABE=∠DAC,
又∵∠BAE=∠D=90°,
∴△ABE~△DAC ,
∴
∵AB=DC,∴AB2=AD·AE=na·a=na2,
∵AB>0,∴AB= .
∴ .
(3)
解:設(shè)AE=a,則AD=na,由AD=4AB,則AB= .
當(dāng)點(diǎn)F落在線段BC上時(shí)(如圖2),EF=AE=AB=a,
此時(shí) ,∴n=4.
∴當(dāng)點(diǎn)F落在矩形外部時(shí),n>4.
∵點(diǎn)F落在矩形的內(nèi)部,點(diǎn)G在AD上,
∴∠FCG<∠BCD,∴∠FCG<90°,
若∠CFG=90°,則點(diǎn)F落在AC上,由(2)得 ,∴n=16.
若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,
∵∠FAG+∠AGF=90°,
∴∠CGD=∠FAG=∠ABE,
∵∠BAE=∠D=90°,
∴△ABE~△DGC,
∴ ,
∴AB·DC=DG·AE,即( )2=(n-2)a·a.
解得 或 (不合題意,舍去),
∴當(dāng)n=16或 時(shí),以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形.
【解析】(1)因?yàn)镚F⊥AF,由對(duì)稱易得AE=EF,則由直角三角形的兩個(gè)銳角的和為90度,且等邊對(duì)等角,即可證明E是AG的中點(diǎn);(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC , 則 ,因?yàn)锳B=DC,且DA,AE已知表示出來(lái)了,所以可求出AB,即可解答;(3)求以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形時(shí)的n,需要分類討論,一般分三個(gè),∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點(diǎn)F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進(jìn)行分析解答.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過(guò)180°的角)的平分線?如果存在,請(qǐng)直接寫出t的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=cm,∠BAC=120°,點(diǎn)P在BC上從C向B運(yùn)動(dòng),點(diǎn)Q在AB、AC上沿B→A→C運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)C、B同時(shí)出發(fā),速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),則當(dāng)運(yùn)動(dòng)時(shí)間t=_____s時(shí),△PAQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)三國(guó)時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長(zhǎng)為14,正方形IJKL的邊長(zhǎng)為2,且IJ//AB,則正方形EFGH的邊長(zhǎng)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力.增強(qiáng)保護(hù)漢字的意識(shí),我區(qū)舉辦了“漢字聽(tīng)寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽(tīng)寫50個(gè)漢字,若每正確聽(tīng)寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 6 |
第3組 | 35≤x<40 | 14 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn).直線經(jīng)過(guò)點(diǎn)、,直線,交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)求的面積;
(4)在直線上存在異于點(diǎn)的另一個(gè)點(diǎn),使得與的面積相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成系列問(wèn)題:
(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.
(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)E到A、C兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù).
(3)在數(shù)軸上有一點(diǎn)F,滿足點(diǎn)F到點(diǎn)A與點(diǎn)F到點(diǎn)C的距離和是9,則點(diǎn)F表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com