【題目】如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G.
(1)猜想線段GF與GC有何數(shù)量關系?并證明你的結論;
(2)若AB=3,AD=4,求線段GC的長.

【答案】
(1)解:GF=GC.

理由如下:連接GE,

∵E是BC的中點,

∴BE=EC,

∵△ABE沿AE折疊后得到△AFE,

∴BE=EF,

∴EF=EC,

∵在矩形ABCD中,

∴∠C=90°,

∴∠EFG=90°,

∵在Rt△GFE和Rt△GCE中,

,

∴Rt△GFE≌Rt△GCE(HL),

∴GF=GC


(2)解:設GC=x,則AG=3+x,DG=3﹣x,

在Rt△ADG中,42+(3﹣x)2=(3+x)2

解得x=


【解析】(1)連接GE,根據(jù)點E是BC的中點以及翻折的性質可以求出BE=EF=EC,然后利用“HL”證明△GFE和△GCE全等,根據(jù)全等三角形對應邊相等即可得證;(2)設GC=x,表示出AG、DG,然后在Rt△ADG中,利用勾股定理列式進行計算即可得解.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對矩形的性質的理解,了解矩形的四個角都是直角,矩形的對角線相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】以原點O為位似中心,作△ABC的位似圖形△A'B'C',△ABC與△A'B'C'相似比為1:3,若點C的坐標為(41),則點C’的坐標為(  )

A.12,3B.(﹣12,3)或(12,﹣3

C.(﹣12,﹣3D.123)或(﹣12,﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCD的對角線BD上的一點,且BE=BC,AB=3,BC=4,點P為直線EC上的一點,且PQ⊥BC于點Q,PR⊥BD于點R.
(1)①如圖1,當點P為線段EC中點時,易證:PR+PQ= (不需證明). ②如圖2,當點P為線段EC上的任意一點(不與點E、點C重合)時,其它條件不變,則①中的結論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
(2)如圖3,當點P為線段EC延長線上的任意一點時,其它條件不變,則PR與PQ之間又具有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把多項式9x2+7x+3x3﹣1按x的降冪排列后,第3項是(
A.9x2
B.7x
C.﹣3x2
D.﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安徽省2010年末森林面積為3804.2千公頃,用科學記數(shù)法表示3804.2千正確的是( 。

A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式﹣6y4+5xy3﹣4x2+x3y是按(
A.x的降冪排列
B.x的升冪排列
C.y的降冪排列
D.y的升冪排列

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2x4+x3y﹣6x2+2xy是(
A.按x的降冪排列
B.按x的升冪排列
C.按y的降冪排列
D.按y的升冪排列

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在D′處,則重疊部分△AFC的面積是(
A.8
B.10
C.20
D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案