【題目】如圖,矩形的面積為20cm2,對角線交于點(diǎn),以AB、AO為鄰邊作平行四邊形,對角線交于點(diǎn);以為鄰邊作平行四邊形;;依此類推,則平行四邊形的面積為______,平行四邊形的面積為______.

【答案】

【解析】

根據(jù)矩形的性質(zhì)求出AOB的面積等于矩形ABCD的面積的,求出AOB的面積,再分別求出ABO1、ABO2ABO3、ABO4的面積,求出平行四邊形的面積,然后再觀察發(fā)現(xiàn)規(guī)律進(jìn)行解答.

解:∵四邊形ABCD是矩形,

AOCO,BODO,DCABDCAB,

SADCSABCS矩形ABCD×2010,

SAOBSBCOSABC×105

SABO1SAOB×5,

SABO2SABO1

SABO3SABO2,

SABO4SABO3,

S平行四邊形AO4C5B2SABO4

∴平行四邊形的面積為:,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級兩個(gè)班各選派10名學(xué)生參加垃圾分類知識競賽,各參賽選手的成績?nèi)缦拢?/span>

八(1)班:8891,9293,9393,94,98,98,100;

八(2)班:8993,93,93,9596,9698,98,99

通過整理,得到數(shù)據(jù)分析表如下

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)求表中的值;

2)依據(jù)數(shù)據(jù)分析表,有同學(xué)認(rèn)為最高分在(1)班,(1)班的成績比(2)班好.但也有同學(xué)認(rèn)為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律:

觀察下面由※組成的圖案和算式,填空(直接寫出答案):

1)請猜想1+3+5+7+9+11= ;

2)請猜想1+3+5+7+9+……+2n-1= ;

3)請用上述規(guī)律計(jì)算:41+43+45+……+97+99=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,是等腰直角三角形,∠BAD=90°,AEBD于點(diǎn)E.連CD分別交AEAB于點(diǎn)F,G,過點(diǎn)AAHCDBD于點(diǎn)H,則下列結(jié)論:①∠ADC=15°;②AF=AG;③AH=DF;④ADFBAH;⑤DF=2EH.其中正確結(jié)論的個(gè)數(shù)為( )

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某同學(xué)將一個(gè)正方形紙片剪去一個(gè)寬為的長條后,再從剩下的長方形紙片上剪去一個(gè)寬為的長條.若兩次剪下的長條面積正好相等,則每一個(gè)長條的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩列火車分別從A、B兩城同時(shí)勻速駛出,甲車開往B城,乙車開往A城.由于墨跡遮蓋,圖中提供的是兩車距B城的路程S(千米)、S(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象的一部分.

1)分別求出S、St的函數(shù)關(guān)系式(不必寫出t的取值范圍);

2)求A、B兩城之間的距離,及t為何值時(shí)兩車相遇;

3)當(dāng)兩車相距300千米時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)Ax1,y1、Bx2,y2,當(dāng)y1y2時(shí),試比較x1x2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中, , , 平分 ,,下面結(jié)論:① ;②是等邊三角形;③;④,其中正確的有

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形ABCD中,,點(diǎn)E,F分別在BC、CD上,,試探究面積的最小值。

下面是小麗的探究過程:

(1)延長EBG,使,連接AG,可以證明.請完成她的證明;

(2)設(shè),

①結(jié)合(1)中結(jié)論,通過計(jì)算得到x的部分對應(yīng)值。請求出表格中a的值:(寫出解答過程)

x

0

1

2

3

4

5

6

7

8

9

10

10

8.18

6.67

5.38

4.29

3.33

a

1.76

1.11

0.53

0

②利用上表和(1)中的結(jié)論通過描點(diǎn)、連線可以分別畫出函數(shù)、的圖像、請?jiān)趫D②中完善她的畫圖;

根據(jù)以上探究,估計(jì)面積的最小值約為(結(jié)果估計(jì)到01)。

圖① 圖②

查看答案和解析>>

同步練習(xí)冊答案