【題目】我市從 2018 年 1 月 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多.某商店計劃最多投入 8 萬元購進(jìn) A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進(jìn)的 A 型電動自行車與用 6 萬元購進(jìn)的 B 型電動自行車數(shù)量一 樣.
(1)求 A、B 兩種型號電動自行車的進(jìn)貨單價;
(2)若 A 型電動自行車每輛售價為 2800 元,B 型電動自行車每輛售價為 3500 元,設(shè)該商店計劃購進(jìn) A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y 與 m 之間的函數(shù)關(guān)系式;
(3)該商店如何進(jìn)貨才能獲得最大利潤?此時最大利潤是多少元?
【答案】(1)A、B 兩種型號電動自行車的進(jìn)貨單價分別為 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 時,y 有最大值,最大值為 11000 元.
【解析】
(1)設(shè) A、B 兩種型號電動自行車的進(jìn)貨單價分別為 x 元、(x+500)元,根據(jù)用 5 萬元購進(jìn)的 A 型電動自行車與用 6 萬元購進(jìn)的 B 型電動自行車數(shù)量一 樣,列分式方程即可解決問題;
(2)根據(jù)總利潤=A 型的利潤+B 型的利潤,列出函數(shù)關(guān)系式即可;
(3)利用一次函數(shù)的性質(zhì)即可解決問題;
(1)設(shè) A、B 兩種型號電動自行車的進(jìn)貨單價分別為 x 元、(x+500) 元,
由題意:=,
解得:x=2500,
經(jīng)檢驗:x=2500 是分式方程的解,
答:A、B 兩種型號電動自行車的進(jìn)貨單價分別為 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 時,y 有最大值,最大值為 11000 元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司對一種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了營銷調(diào)查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場后當(dāng)年能全部售出且發(fā)現(xiàn)每噸的售價p(單位:萬元)由基礎(chǔ)價與浮動價兩部分組成,其中基礎(chǔ)價是固定不變的,浮動價與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時,所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)
(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;
(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;
(3)當(dāng)年銷售利潤最大時,每噸的售價是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)x2﹣4x﹣3=0
(2)(x﹣3)2+2x(x﹣3)=0
(3)(x﹣1)2=4
(4)3x2+5(2x+3)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,點(diǎn)H在邊BC上,點(diǎn)K在邊AC上,且滿足AK=HC,連接AH、BK交于點(diǎn)F,
(1)如圖1,求∠AFB的度數(shù);
(2)如圖2,連接FC,若∠BFC=90°,點(diǎn)G為邊 AC上一點(diǎn),且滿足∠GFC=30°,求證:AG⊥BG;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過點(diǎn)E作EF⊥AE,交BC于點(diǎn)F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE∽△ECF;
(3)應(yīng)用:如圖③,若EF交AB邊于點(diǎn)F,其他條件不變,且△PEF的面積是3,則AP的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( )
A. 圖象的對稱軸是直線x=﹣1 B. 當(dāng)x>﹣1時,y隨x的增大而減小
C. 當(dāng)﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C任作一直線PQ,過點(diǎn)A作于點(diǎn)M,過點(diǎn)B作BNPQ于點(diǎn)N.
(1)如圖①,當(dāng)M、N在△ABC的外部時,MN、AM、BN有什么關(guān)系呢?為什么?
(2)如圖②,當(dāng)M、N在△ABC的內(nèi)部時,(1)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請指出MN與AM、BN之間的數(shù)關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字:在直角坐標(biāo)系中,已知兩點(diǎn)的坐標(biāo)是M(x1,y1),N(x2,y2)),M,N兩點(diǎn)之間的距離可以用公式MN=計算.解答下列問題:
(1)若點(diǎn)P(2,4),Q(﹣3,﹣8),求P,Q兩點(diǎn)間的距離;
(2)若點(diǎn)A(1,2),B(4,﹣2),點(diǎn)O是坐標(biāo)原點(diǎn),判斷△AOB是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于點(diǎn)D,點(diǎn)E在線段CD上(點(diǎn)E不與點(diǎn)C. D重合),且∠EAC=2∠EBC.
(1)如圖1,若∠EBC=27°,且EB=EC,則∠DEB=___°,∠AEC=___°.
(2)如圖2,①求證:AE+AC=BC;
②若∠ECB=30°,且AC=BE,求∠EBC的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com