精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線AB∥CD,直線AB、CD被直線EF所截,EG平分∠BEF,FG平分∠DFE,

(1)若∠AEF=50°,求∠EFG的度數.

(2)判斷EG與FG的位置關系,并說明理由.

【答案】(1)25°;(2)EG⊥FG

【解析】試題分析:.解:(。∵AB∥CD

∴∠EFD=∠AEF=50°

∵FG平分∠DFE

∵∠EFG=∠DFE×50°25°

2EG⊥FG

理由:∵AB∥CD

∴∠BEF+∠EFD=180°

∵EG平分∠BEF,FG平分∠DFE

∴∠GEF=∠BEF,∠GFE=∠DFE

∴∠GEF+∠GFE=∠BEF+∠DFE

=(∠BEF+∠DFE)

=×180°

=90°

∴∠G=180°(∠BEF+∠DFE)=90°

∴EG⊥FG

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某工廠計劃生產A、B兩種產品共50件,需購買甲、乙兩種材料.生產一件A產品需甲種材料30千克、乙種材料10千克;生產一件B產品需甲、乙兩種材料各20千克.經測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.

1)甲、乙兩種材料每千克分別是多少元?

2)現工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產B產品不少于28件,問符合條件的生產方案有哪幾種?

3)在(2)的條件下,若生產一件A產品需加工費200元,生產一件B產品需加工費300元,應選擇哪種生產方案,使生產這50件產品的成本最低?(成本=材料費+加工費)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=(x﹣1)2﹣1.

(1)該拋物線的對稱軸是 , 頂點坐標
(2)選取適當的數據填入下表,并在圖中的直角坐標系內描點畫出該拋物線的圖象;

x

y


(3)根據圖象,直接寫出當y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數

頻率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

請根據所給信息,解答下列問題:

(1)m   ,n   ;

(2)請補全頻數分布直方圖;

(3)若成績在90分以上(包括90)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】[閱讀]

在平面直角坐標系中,以任意兩點Px1,y1)、Qx2,y2)為端點的線段中點坐標為).

[運用]

(1)如圖,矩形ONEF的對角線相交于點M,ONOF分別在x軸和y軸上,O為坐標原點,E的坐標為(4,3),則點M的坐標為

(2)在直角坐標系中,A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點AB、C構成平行四邊形的頂點求點D的坐標

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正△ABC的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠APD=60°,PD交AB于點D.設BP=x,BD=y,則y關于x的函數圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,△ABC經過平移之后成為△DEF,那么:

(1)A的對應點是點________

(2)________的對應點是點F;

(3)線段AB的對應線段是線段________;

(4)線段BC的對應線段是線段________

(5)A的對應角是________;

(6)________的對應角是∠F.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.

查看答案和解析>>

同步練習冊答案