【題目】如圖,在四邊形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BCE,連接DE

1)說明點DABE的外接圓上;

2)若∠AED=CED,試判斷直線CDABE外接圓的位置關(guān)系,并說明理由.

【答案】見解析

【解析】試題分析:(1)根據(jù)題中條件可證明AOB≌△AOD,得到OD=OB,可證點DABE的外接圓上;

2)根據(jù)C=90°,可得CED+∠CDE=90°;利用ODE=∠DEC,可知ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,即CDABE的外接圓相切.

試題解析:證明:1∵∠B=90°AEABE外接圓的直徑.

AE的中點O,則O為圓心,連接OB、OD

AOBAOD中,AB=AD,BAC=∠DAOAO=AOAOBAODOD=OBDABE的外接圓上.

2)直線CDABE的外接圓相切.

理由:ABCDB=90°∴∠C=90°,∴∠CED+∠CDE=90°

OE=OD,∴∠ODE=∠OED

AED=∠CED∴∠ODE=∠DEC,∴∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,CDABE的外接圓相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,,點E在線段AB上,,點F在直線AD上,

,求的度數(shù);

找出圖中與相等的角,并說明理由;

的條件下,點不與點BH重合從點B出發(fā),沿射線BG的方向移動,其他條件不變,請直接寫出的度數(shù)不必說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共180件,其進價和售價如表:(注:獲利=售價-進價)

進價(元/件)

14

35

售價(元/件)

20

43

1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進多少件?

2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,C(0,5)、D(a,5)(a>0),A、B在x軸上,1=D,請寫出ACB和BED數(shù)量關(guān)系以及證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC內(nèi)接于半徑為1的⊙O,以BC為一邊作⊙O的內(nèi)接矩形BCDE,求矩形BCDE的面積 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A、Bx軸上兩點,C、Dy軸上兩點,經(jīng)過點A,CB的拋物線的一部分C1與經(jīng)過點A,D,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0, ),點M是拋物線C2y=mx2-2mx-3mm0)的頂點

1)求AB兩點的坐標(biāo);

2)求經(jīng)過點A,C,B的拋物線C1的函數(shù)表達(dá)式.

3)探究“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出點P的坐標(biāo)及PBC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個三位數(shù),如果滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”的各個數(shù)位上的數(shù)字之和記為. 例如時,.

(1)對于“相異數(shù)”,若,請你寫出一個的值;

(2)都是“相異數(shù)”,其中,(都是正整數(shù)),規(guī)定:,當(dāng)時,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個動點P在平面直角坐標(biāo)系中按箭頭所示方向作折線運動,即第一次從原點運動到(11),第二次從(11)運動到(2,0),第三次從(2,0)運動到(32),第四次從(32)運動到(4,0),第五次從(4,0)運動到(5,1),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標(biāo)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,DAC中點,BE平分∠ABDAC于點E,點OAB上一點,⊙OB、E兩點,交BD于點G,交AB于點F

1)判斷直線AC⊙O的位置關(guān)系,并說明理由;

2)當(dāng)BD=6,AB=10時,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案