【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數圖象.則下列結論:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙遲h到達B地;
(4)乙車行駛小時或小時,兩車恰好相距50km.
正確的個數是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】(1)由題意,得m=1.5﹣0.5=1.
120÷(3.5﹣0.5)=40(km/h),則a=40,故(1)正確;
(2)120÷(3.5﹣2)=80km/h(千米/小時),故(2)正確;
(3)設甲車休息之后行駛路程y(km)與時間x(h)的函數關系式為y=kx+b,由題意,得
解得:
∴y=40x﹣20,
根據圖形得知:甲、乙兩車中先到達B地的是乙車,
把y=260代入y=40x﹣20得,x=7,
∵乙車的行駛速度:80km/h,
∴乙車的行駛260km需要260÷80=3.25h,
∴7﹣(2+3.25)=h,
∴甲比乙遲h到達B地,故(3)正確;
(4)當1.5<x≤7時,y=40x﹣20.
設乙車行駛的路程y與時間x之間的解析式為y=k'x+b',由題意得
解得:
∴y=80x﹣160.
當40x﹣20﹣50=80x﹣160時,
解得:x=.
當40x﹣20+50=80x﹣160時,
解得:x=.
∴﹣2=, ﹣2=.
所以乙車行駛小時或小時,兩車恰好相距50km,故(4)錯誤.
故選C.
科目:初中數學 來源: 題型:
【題目】(閱讀理解)
已知:如圖,等腰直角三角形中,,是平分線,交邊于點.
求證:.
證明:在上截取,連接,
則由已知條件易知:.
∴,
又∵,∴是等腰直角三角形,
∴ ∴.
(數學思考)
現將原題中的“是平分線,交邊于點”換成“是的外角平分線,交邊的延長線于點”,如圖,其他條件不變,請你猜想線段之間的數量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD與CEFG如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=16cm,BC=12cm,D為AB的中點.若點P在線段BC上以4cm/s的速度由B向C運動,同時,點Q在線段CA上以a(cm/s)的速度由C向A運動,設運動的時間為t(s)(0≤t≤3)
(1)用關于t的代數式表示PC的長度.
(2)若點P,Q的運動速度相等,經過1s后,△BPD與△CQP是否全等?請說明理由.
(3)若點PQ的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是( 。
A. 將拋物線c沿x軸向右平移個單位得到拋物線c′ B. 將拋物線c沿x軸向右平移4個單位得到拋物線c′
C. 將拋物線c沿x軸向右平移個單位得到拋物線c′ D. 將拋物線c沿x軸向右平移6個單位得到拋物線c′
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】旅游公司在景區(qū)內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發(fā)現每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在三角形紙片ABC中,∠B=90°,∠A=30°,AC=4,點E在AC上,AE=3.將三角形紙片按圖1方式折疊,使點A的對應點落在AB的延長線上,折痕為ED,交BC于點F.
(1)求∠CFE的度數;
(2)如圖2,,繼續(xù)將紙片沿BF折疊,點的對應點為,交DE于點G .求線段DG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數是( )
A.14B.13C.12D.11
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com