【題目】某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價(jià)為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護(hù)環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費(fèi)用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤y元:
(1)求出y與x的函數(shù)關(guān)系式.(純利潤=總收入-總支出)
(2)當(dāng)y=106000時(shí),求該廠在這個月中生產(chǎn)產(chǎn)品的件數(shù).
【答案】(1)y=19x-8000(x>0且x是整數(shù)) (2)6000件
【解析】
(1)本題的等量關(guān)系是:純利潤=產(chǎn)品的出廠單價(jià)×產(chǎn)品的數(shù)量-產(chǎn)品的成本價(jià)×產(chǎn)品的數(shù)量-生產(chǎn)過程中的污水處理費(fèi)-排污設(shè)備的損耗,可根據(jù)此等量關(guān)系來列出總利潤與產(chǎn)品數(shù)量之間的函數(shù)關(guān)系式;
(2)根據(jù)(1)中得出的式子,將y的值代入其中,求出x即可.
(1)依題意得:y=80x-60x-0.5x2-8000,
化簡得:y=19x-8000,
∴所求的函數(shù)關(guān)系式為y=19x-8000.(x>0且x是整數(shù))
(2)當(dāng)y=106000時(shí),代入得:106000=19x-8000,
解得x=6000,
∴這個月該廠生產(chǎn)產(chǎn)品6000件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OFDE=OE2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△COD,設(shè)E為AD的中點(diǎn).
(1)若F為CD上一動點(diǎn),求出當(dāng)△DEF與△COD相似時(shí)點(diǎn)F的坐標(biāo);
(2)過E作x軸的垂線l,在直線l上是否存在一點(diǎn)Q,使∠CQO=∠CDO?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=24 m,小明和小華的身高都是1.6 m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2 m和1 m,那么塔高AB為________ m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“節(jié)能減排、綠色出行”的健康生活意識的普及,新能源汽車越來越多地走進(jìn)百姓的生活.某汽車租賃公司擁有40輛電動汽車,據(jù)統(tǒng)計(jì),當(dāng)每輛車的日租金為120元時(shí),可全部租出;當(dāng)每輛車的日租金每增加5元時(shí),未租出的車將增加1輛;該公司平均每日的各項(xiàng)支出共2100元.
(1)若某日共有x輛車未租出,則當(dāng)日每輛車的日租金為 元;
(2)當(dāng)每輛車的日租金為多少時(shí),該汽車租賃公司日收益最大?最大日收益是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),則能使為等腰三角形的拋物線的條數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問題:
(1)= ,,= ;
(2)若=2,則的取值范圍是 ;若=-1,則的取值范圍是 ;
(3)已知,滿足方程組,求,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直線AB交x軸于點(diǎn)A(﹣4,0),交y軸于點(diǎn)B,拋物線y=ax2+2ax+3(a≠0)經(jīng)過A,B兩點(diǎn).P是線段AO上的一動點(diǎn),過點(diǎn)P作PC⊥x軸交直線AB于點(diǎn)C,交拋物線于點(diǎn)D.
(1)求a及AB的長.
(2)連結(jié)PB,若tan∠ABP=,求點(diǎn)P的坐標(biāo).
(3)連結(jié)BD,以BD為邊作正方形BDEF,是否存在點(diǎn)P使點(diǎn)E恰好落在拋物線的對稱軸上?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(4)連結(jié)OC,若S△BDC:S△OBC=1:2,將線段BD繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),得到DB′.則在旋轉(zhuǎn)的過程中,當(dāng)點(diǎn)A,B到直線DB′的距離和最大時(shí),請直接寫出點(diǎn)B′的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com