【題目】如圖,在等腰直角△ABC中,∠C90°,AB10,點(diǎn)FAB的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且始終保持DFEF,則△CDE面積的最大值為__

【答案】

【解析】

連接CF,根據(jù)全等三角形的判定定理可判定ADF≌△CEF,設(shè)ADx,CDE的面積為y,則CEx,C90°,列出y關(guān)于x的二次函數(shù),利用最值點(diǎn)即可得到答案.

解:如圖所示,連接CF

等腰直角ABC中,C90°,AB10,點(diǎn)FAB的中點(diǎn),

CFAF,AFCE,ACBC10×5

∵∠DFC+∠CFE90°,AFD+∠CFD90°,

∴∠AFDCFE,

∴△ADF≌△CEFASA),

設(shè)ADx0x5),CDE的面積為y,則CExCD5x,C90°,

yx5x)=﹣+

CDE面積的最大值為,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)査.這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對應(yīng)關(guān)系如圖所示:

1)試求出yx之間的函數(shù)關(guān)系;

2)若許原瓶的進(jìn)價(jià)為6/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面內(nèi)的點(diǎn)和點(diǎn),給出如下定義:點(diǎn)為平面內(nèi)一點(diǎn),若點(diǎn)使得是以為頂角且小于90°的等腰三角形,則稱點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).如圖,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).

在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn)

(1)已知點(diǎn),在點(diǎn), ,中,是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)的是 ;

(2)已知點(diǎn),點(diǎn)在直線上,若點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),求實(shí)數(shù)的取值范圍.

(3) 點(diǎn)軸上的動(dòng)點(diǎn),,,點(diǎn)是以點(diǎn)為圓心,2為半徑的圓上一動(dòng)點(diǎn).且滿足,若直線上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“圓材埋壁”是我國古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“CD的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為(

A.12B.13C.24D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在離水面高度AC為2米的岸上有人用繩子拉船靠岸,開始時(shí)繩子與水面的夾角為30°,此人以每秒05米的速度收繩子

問:1未開始收繩子的時(shí)候,圖中繩子BC的長度是多少米?

2收繩2秒后船離岸邊多少米?結(jié)果保留根號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣x+cx軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

(1)求拋物線表達(dá)式;

(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線分別交x軸和直線ABM、N兩點(diǎn),若P、M、N三點(diǎn)中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),請求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有甲種原料,乙種原料,計(jì)劃用這兩種原料生產(chǎn)、兩種產(chǎn)品共40件.生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤900元;生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤1100元.設(shè)安排生產(chǎn)種產(chǎn)品(為非負(fù)整數(shù))

(I)根據(jù)題意,填寫下表:

甲(

乙(

件數(shù)(件)

(Ⅱ) 安排生產(chǎn)、兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由:

(Ⅲ) 設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤元,將表示為的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=-x2+bx+cx軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).

1)求此拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)Px軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PGAB于點(diǎn)G.求出PFG的周長最大值;

3)在拋物線y=-x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得ABMABD的面積相等?若存在,請求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在每個(gè)邊長都為1的小正方形組成的網(wǎng)格中,點(diǎn)、、均為格點(diǎn).

1)線段的長度等于______

2)若為線段上的動(dòng)點(diǎn),以、為鄰邊的四邊形為平行四邊形,當(dāng)長度最小時(shí),請你借助網(wǎng)格和無刻度的直尺畫出該平行四邊形,并簡要說明你的作圖方法:__________(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案