【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,PO交AB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點A(﹣1,0),點B(3,0),與y軸交于點C,點D是該拋物線的頂點,連接AD,BD.
(1)直接寫出點C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點P是拋物線上的一動點,若△ABP的面積是△ABD面積的,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為18米的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)如果要圍成面積為24m2的花圃,AB的長是多少米?
(3)能圍成面積比24m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段在平面直角坐標(biāo)系中的位置如圖所示,為坐標(biāo)原點.若線段上一點的坐標(biāo)為,則直線與線段的交點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】強(qiáng)哥駕駛小汽車(出租)勻速地從如皋火車站送客到南京綠口機(jī)場,全程為280km,設(shè)小汽車的行駛時間為t(單位:h),行駛速度為v(單位:km/h),且全程速度限定為不超過120km/h.
(1)求v關(guān)于t的函數(shù)解析式;
(2)強(qiáng)哥上午8點駕駛小汽車從如皋火車站出發(fā).
①乘客需在當(dāng)天10點48分至11點30分(含10點48分和11點30分)間到達(dá)南京綠口機(jī)場,求小汽車行駛速度v的范圍;
②強(qiáng)哥能否在當(dāng)天10點前到達(dá)綠口機(jī)場?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設(shè)計為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車場共有車位64個,據(jù)調(diào)查分析,當(dāng)每個車位的月租金為200元時,可全部租出;當(dāng)每個車位的月租金每上漲10元,就會少租出1個車位.當(dāng)每個車位的月租金上漲多少元時,停車場的月租金收入為14400元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).
(1)當(dāng)圓心在內(nèi)部,時,________.
(2)當(dāng)圓心在內(nèi)部,四邊形為平行四邊形時,求的度數(shù);
(3)當(dāng)圓心在外部,四邊形為平行四邊形時,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com