【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過點(diǎn)B的切線交CD的延長線于E.
(1)求證:DA平分∠CDO;
(2)若AB=12,求圖中陰影部分的周長之和(參考數(shù)據(jù):π=3.1, =1.4, =1.7)

【答案】
(1)證明:∵CD∥AB,

∴∠CDA=∠BAD,

又∵OA=OD,

∴∠ADO=∠BAD,

∴∠ADO=∠CDA,

∴DA平分∠CDO


(2)解:如圖:

連接BD,

∵AB是直徑,

∴∠ADB=90°,

∵AC=CD,

∴∠CAD=∠CDA,

又∵CD∥AB,

∴∠CDA=∠BAD,

∴∠CDA=∠BAD=∠CAD,

= = ,

又∵∠AOB=180°,

∴∠DOB=60°,

∵OD=OB,

∴△DOB是等邊三角形,

∴BD=OB= AB=6,

= ,

∴AC=BD=6,

∵BE切⊙O于B,

∴BE⊥AB,

∴∠DBE=∠ABE﹣∠ABD=30°,

∵CD∥AB,

∴BE⊥CE,

∴DE= BD=3,BE=BD×cos∠DBE=6× =3

的長= =2π,

∴圖中陰影部分周長之和為 =4π+9+3 =4×3.1+9+3×1.7=26.5.


【解析】(1)只要證明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先證明 = = ,再證明∠DOB=60°得△BOD是等邊三角形,由此即可解決問題.本題考查切線的性質(zhì)、平行線的性質(zhì)、等邊三角形的判定和性質(zhì)、弧長公式等知識,解題的關(guān)鍵是靈活應(yīng)用這些知識解決問題,學(xué)會添加常用輔助線,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx+3(k<0)分別交x軸、y軸于A、B兩點(diǎn),線段OA上有一動點(diǎn)P由原點(diǎn)O向點(diǎn)A運(yùn)動,速度為每秒1個單位長度,過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,設(shè)運(yùn)動時間為t秒.

(1)當(dāng)k=﹣1時,線段OA上另有一動點(diǎn)Q由點(diǎn)A向點(diǎn)O運(yùn)動,它與點(diǎn)P以相同速度同時出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時兩點(diǎn)同時停止運(yùn)動(如圖1).
①直接寫出t=1秒時C、Q兩點(diǎn)的坐標(biāo);
②若以Q、C、A為頂點(diǎn)的三角形與△AOB相似,求t的值.
(2)當(dāng) 時,設(shè)以C為頂點(diǎn)的拋物線y=(x+m)2+n與直線AB的另一交點(diǎn)為D(如圖2),
①求CD的長;
②設(shè)△COD的OC邊上的高為h,當(dāng)t為何值時,h的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD是△ABC的角平分線,點(diǎn)E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD=BC,AC=BD.
(1)求證:△ADB≌△BCA;
(2)OA與OB相等嗎?若相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結(jié)論中,不一定正確的是(  )
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若SDOE:SCOA=1:25,則SBDE與SCDE的比是( 。
A.1:3
B.1:4
C.1:5
D.1:25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,則DC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E為BC上一點(diǎn),∠BDE=∠DBC.
(1)求證:DE=EC;
(2)若AD= BC,試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案