【題目】如圖,在△ABC,點(diǎn)D.E分別在邊AB,AC,DEBC,按下列要求畫(huà)圖并填空

(1)過(guò)點(diǎn)E畫(huà)直線BC的垂線交直線BC于點(diǎn)F;

(2)點(diǎn)D到直線______的距離等于線段EF的長(zhǎng)度

(3)聯(lián)結(jié)BE.CD,EBC的面積______DBC的面積.

【答案】1)見(jiàn)解析;(2BC;(3)等于。

【解析】

1)過(guò)E點(diǎn)向BC作垂線即可;(2)由平行線間的距離可知DBC的距離等于EF的長(zhǎng)度;(3)由(2)結(jié)論易得EBCDBC是同底等高的三角形,所以面積相等.

1)如圖所示:

2)因?yàn)?/span>DEBC,EFBC,所以EFDEBC間的距離,則DBC的距離等于EF的長(zhǎng)度;

3)由(2)可知DBC的距離等于EF的長(zhǎng)度,所以EBCDBC公共邊BC上的高相等,根據(jù)底等高的兩三角形面積相等,有EBC的面積等于DBC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為A0,a),Bb,a),且a,b滿足(a32+|b6|0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)AB的對(duì)應(yīng)點(diǎn)C,D,連接AC,BDAB

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD

2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使SMCDS四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;

3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與BD重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,DBC的中點(diǎn),過(guò)點(diǎn)D的直線GFACF,交AC的平行線BGG點(diǎn),DEGF,交AB于點(diǎn)E,連接EG,EF.

1)說(shuō)明:BG=CF;

2BE,CFEF這三條線段能否組成一個(gè)三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字后,回答問(wèn)題:

甲、乙兩人同時(shí)解答題目:化簡(jiǎn)并求值:,其中a=5甲、乙兩人的解答不同;

甲的解答是:;

乙的解答是:

1  的解答是錯(cuò)誤的.

2)錯(cuò)誤的解答在于未能正確運(yùn)用二次根式的性質(zhì):  

3)模仿上題解答:化簡(jiǎn)并求值:,其中a=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCDBCx軸上,頂點(diǎn)Ay軸上,對(duì)角線AC所在的直線為y=+6,且AC=AB,若點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)以2cm/s的速度沿射線CB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)O時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts).

1)直接寫(xiě)出頂點(diǎn)D的坐標(biāo)(____________),對(duì)角線的交點(diǎn)E的坐標(biāo)(______,______);

2)求對(duì)角線BD的長(zhǎng);

3)是否存在t,使SPOQ=SABCD,若存在,請(qǐng)求出的t值;不存在說(shuō)明理由.

4)在整個(gè)運(yùn)動(dòng)過(guò)程中,PQ的中點(diǎn)到原點(diǎn)O的最短距離是______cm,(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是一塊直角三角板,且C=90°,A=30°,現(xiàn)將圓心為點(diǎn)O的圓形紙片放置在三角板內(nèi)部.

(1)如圖,當(dāng)圓形紙片與兩直角邊AC、BC都相切時(shí),試用直尺與圓規(guī)作出射線CO;(不寫(xiě)作法與證明,保留作圖痕跡)

(2)如圖,將圓形紙片沿著三角板的內(nèi)部邊緣滾動(dòng)1周,回到起點(diǎn)位置時(shí)停止,若BC=9,圓形紙片的半徑為2,求圓心O運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一元二次方程中,有著名的韋達(dá)定理:對(duì)于一元二次方程ax2+bx+c0a≠0),如果方程有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=﹣x1x2(說(shuō)明:定理成立的條件≥0).比如方程2x23x10中,17,所以該方程有兩個(gè)不等的實(shí)數(shù)解.記方程的兩根為x1x2,那么x1+x2x1x2=﹣,請(qǐng)根據(jù)閱讀材料解答下列各題:

1)已知方程x23x20的兩根為x1、x2,且x1x2,求下列各式的值:

x12+x22;②

2)已知x1,x2是一元二次方程4kx24kx+k+10的兩個(gè)實(shí)數(shù)根.

①是否存在實(shí)數(shù)k,使(2x1x2)(x12x2)=﹣成立?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

②求使的值為整數(shù)的實(shí)數(shù)k的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.(以下計(jì)算結(jié)果精確到0.1m)

(1)求小明此時(shí)與地面的垂直距離CD的值;

(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車(chē)分別從A、B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車(chē)出發(fā)2h后休息,與甲車(chē)相遇后,繼續(xù)行駛.設(shè)甲、乙兩車(chē)與B地的路程分別為ykm,ykm,甲車(chē)行駛的時(shí)間為xh,y、y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:

1乙車(chē)休息了 h.

2求乙車(chē)與甲車(chē)相遇后y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍.

3當(dāng)兩車(chē)相距40km時(shí),求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案