【題目】如圖,在△ABC中,點(diǎn)D.E分別在邊AB,AC上,DE∥BC,按下列要求畫(huà)圖并填空
(1)過(guò)點(diǎn)E畫(huà)直線BC的垂線交直線BC于點(diǎn)F;
(2)點(diǎn)D到直線______的距離等于線段EF的長(zhǎng)度
(3)聯(lián)結(jié)BE.CD,EBC的面積______DBC的面積.
【答案】(1)見(jiàn)解析;(2)BC;(3)等于。
【解析】
(1)過(guò)E點(diǎn)向BC作垂線即可;(2)由平行線間的距離可知D到BC的距離等于EF的長(zhǎng)度;(3)由(2)結(jié)論易得EBC與DBC是同底等高的三角形,所以面積相等.
(1)如圖所示:
(2)因?yàn)?/span>DE∥BC,EF⊥BC,所以EF是DE與BC間的距離,則D到BC的距離等于EF的長(zhǎng)度;
(3)由(2)可知D到BC的距離等于EF的長(zhǎng)度,所以EBC與DBC公共邊BC上的高相等,根據(jù)底等高的兩三角形面積相等,有EBC的面積等于DBC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)點(diǎn)D的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥GF,交AB于點(diǎn)E,連接EG,EF.
(1)說(shuō)明:BG=CF;
(2)BE,CF與EF這三條線段能否組成一個(gè)三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字后,回答問(wèn)題:
甲、乙兩人同時(shí)解答題目:“化簡(jiǎn)并求值:,其中a=5.”甲、乙兩人的解答不同;
甲的解答是:;
乙的解答是:.
(1) 的解答是錯(cuò)誤的.
(2)錯(cuò)誤的解答在于未能正確運(yùn)用二次根式的性質(zhì): .
(3)模仿上題解答:化簡(jiǎn)并求值:,其中a=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知□ABCD邊BC在x軸上,頂點(diǎn)A在y軸上,對(duì)角線AC所在的直線為y=+6,且AC=AB,若點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)以2cm/s的速度沿射線CB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)O時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)直接寫(xiě)出頂點(diǎn)D的坐標(biāo)(______,______),對(duì)角線的交點(diǎn)E的坐標(biāo)(______,______);
(2)求對(duì)角線BD的長(zhǎng);
(3)是否存在t,使S△POQ=SABCD,若存在,請(qǐng)求出的t值;不存在說(shuō)明理由.
(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,PQ的中點(diǎn)到原點(diǎn)O的最短距離是______cm,(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點(diǎn)O的圓形紙片放置在三角板內(nèi)部.
(1)如圖①,當(dāng)圓形紙片與兩直角邊AC、BC都相切時(shí),試用直尺與圓規(guī)作出射線CO;(不寫(xiě)作法與證明,保留作圖痕跡)
(2)如圖②,將圓形紙片沿著三角板的內(nèi)部邊緣滾動(dòng)1周,回到起點(diǎn)位置時(shí)停止,若BC=9,圓形紙片的半徑為2,求圓心O運(yùn)動(dòng)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一元二次方程中,有著名的韋達(dá)定理:對(duì)于一元二次方程ax2+bx+c=0(a≠0),如果方程有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=﹣,x1x2=(說(shuō)明:定理成立的條件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以該方程有兩個(gè)不等的實(shí)數(shù)解.記方程的兩根為x1,x2,那么x1+x2=,x1x2=﹣,請(qǐng)根據(jù)閱讀材料解答下列各題:
(1)已知方程x2﹣3x﹣2=0的兩根為x1、x2,且x1>x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.
①是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
②求使的值為整數(shù)的實(shí)數(shù)k的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.(以下計(jì)算結(jié)果精確到0.1m)
(1)求小明此時(shí)與地面的垂直距離CD的值;
(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩輛汽車(chē)分別從A、B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車(chē)出發(fā)2h后休息,與甲車(chē)相遇后,繼續(xù)行駛.設(shè)甲、乙兩車(chē)與B地的路程分別為y甲(km),y乙(km),甲車(chē)行駛的時(shí)間為x(h),y甲、y乙與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:
(1)乙車(chē)休息了 h.
(2)求乙車(chē)與甲車(chē)相遇后y乙關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍.
(3)當(dāng)兩車(chē)相距40km時(shí),求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com