【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點B的橫坐標為x,設(shè)點C的縱坐標為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】A
【解析】解:作AD∥x軸,作CD⊥AD于點D,若右圖所示,

由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,點C的縱坐標是y,

∵AD∥x軸,

∴∠DAO+∠AOD=180°,

∴∠DAO=90°,

∴∠OAB+∠BAD=∠BAD+∠DAC=90°,

∴∠OAB=∠DAC,

在△OAB和△DAC中,

,

∴△OAB≌△DAC(AAS),

∴OB=CD,

∴CD=x,

∵點C到x軸的距離為y,點D到x軸的距離等于點A到x的距離1,

∴y=x+1(x>0).

故答案為:A.

過點C作y軸垂線,構(gòu)造出全等三角形,尤其性質(zhì)對應(yīng)邊轉(zhuǎn)化為坐標求出y、x的函數(shù)關(guān)系是y=x+1(x>0),圖像是一條射線.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別是A(2,2)、B(4,0)、C(4,﹣4).
①請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
②以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,平分,,∠B=450,∠C=730

(1) 求的度數(shù);

(2) 如圖②,若把“”變成“點FDA的延長線上,”,其它條件不變,求 的度數(shù);

(3) 如圖③,若把“”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A23),點B﹣21),在x軸上存在點PAB兩點的距離之和最小,則P點的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,已知點A(6,0),又點B(x,y)在第一象限內(nèi),且xy=8,設(shè)△AOB的面積是S.

(1)寫出Sx之間的函數(shù)解析式,并求出x的取值范圍;

(2)畫出(1)中所求函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標系中,∠221,點Cx軸正半軸上的一動點.

1)求∠1的度數(shù);

2)若OFACOEAB,求證:∠EOF=∠EAF;

3)點C在運動中,若∠1=∠ACO,試判斷ABAC有怎樣的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:

(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

同步練習冊答案