【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.

【答案】
(1)90;直徑所對的圓周角是直角
(2)解:△EAD是等腰三角形.

證明:∵∠ABC的平分線與AC相交于點(diǎn)D,

∴∠CBD=∠ABE

∵AE是⊙O的切線,∴∠EAB=90°

∴∠AEB+∠EBA=90°,

∵∠EDA=∠CDB,∠CDB+∠CBD=90°,

∵∠CBE=∠ABE,

∴∠AED=∠EDA,

∴AE=AD

∴△EAD是等腰三角形


(3)解:∵AE=AD,AD=6,

∴AE=AD=6,

∵AB=8,

∴在直角三角形AEB中,EB=10

∵∠CDB=∠E,∠CBD=∠ABE

∴△CDB∽△AEB,

= = =

∴設(shè)CB=4x,CD=3x則BD=5x,

∴CA=CD+DA=3x+6,

在直角三角形ACB中,

AC2+BC2=AB2

即:(3x+6)2+(4x)2=82,

解得:x=﹣2(舍去)或x=

∴BD=5x=


【解析】解:(1)∵AB是⊙O的直徑,點(diǎn)C在⊙O上, ∴∠ACB=90°(直徑所對的圓周角是直角)
(1)根據(jù)AB是⊙O的直徑,點(diǎn)C在⊙O上利用直徑所對的圓周角是直角即可得到結(jié)論;(2)根據(jù)∠ABC的平分線與AC相交于點(diǎn)D,得到∠CBD=∠ABE,再根據(jù)AE是⊙O的切線得到∠EAB=90°,從而得到∠CDB+∠CBD=90°,等量代換得到∠AED=∠EDA,從而判定△EAD是等腰三角形.(3)證得△CDB∽△AEB后設(shè)BD=5x,則CB=4x,CD=3x,從而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動時,折痕的端點(diǎn)P、Q也隨之移動;

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點(diǎn)E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察圖,解答下列問題.

(1)圖中的小圓圈被折線隔開分成六層,第一層有1個小圓圈,第二層有3個圓圈,第三層有5個圓圈,……,第六層有11個圓圈.如果要你繼續(xù)

下去,那么第七層有幾個小圓圈?第n層呢?

(2)某一層上有77個圓圈,這是第幾層?

(3)數(shù)圖中的圓圈個數(shù)可以有多種不同的方法.

比如:前兩層的圓圈個數(shù)和為(1+3)或22

由此得,1 + 3 = 22.

同樣,

由前三層的圓圈個數(shù)和得:1 + 3 + 5 = 32.

由前四層的圓圈個數(shù)和得:1 + 3 + 5 + 7 = 42.

由前五層的圓圈個數(shù)和得:1 + 3 + 5 + 7 + 9 = 52.

……

根據(jù)上述請你猜測,從1開始的n個連續(xù)奇數(shù)之和是多少?用公式把它表示出來.

(4)計(jì)算:1 + 3 + 5 + … + 19的和;

(5)計(jì)算:11 + 13 + 15 + … + 99的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線ACBD相交于O,不能判定四邊形ABCD是平行四邊形的是(

A. ABCD,AO=CO B. ABDC,ABC=ADC

C. AB=DC,AD=BC D. AB=DC,ABC=ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小明的年齡是m小紅的年齡比小明的年齡的2倍少4,小華的年齡比小紅的年齡的還多1

(1)請用含m的式子表示這三人的年齡和;

(2)若這三人的年齡和為35,請你求出這三人的年齡

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

小凱的作法如下:

老師說:“小凱的作法正確.”

請回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長分別為12,另一種紙片的兩條直角邊長都為2.

1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1. 請用三種方法將圖中所給四塊直角三角形紙片全部用上,互不重疊且不留空隙,三種方法所拼得的平行四邊形(非矩形)的周長互不相等,并把你所拼得的圖形按實(shí)際大小畫在圖1、圖2、圖3的方格紙上.

要求:(1)所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;

(2)畫圖時,要保留四塊直角三角形紙片的拼接痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖①所示,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線ON,再選定一個單位長度,那么平面上任一點(diǎn)M的位置可由OM的長度m與∠MON的度數(shù)θ確定,有序數(shù)對(m,θ)稱為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”.
應(yīng)用:在圖②的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線ON上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為( )

A.(4,60°)
B.(4,45°)
C.(2 ,60°)
D.(2 ,50°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:a是最小的正整數(shù),且a,b,c滿足|a+b|+(c﹣5)2=0,請回答問題.

(1)請直接寫出a、b、c的值;

(2)a、b、c所對應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動點(diǎn),其對應(yīng)的數(shù)為x,點(diǎn)P在A、B之間運(yùn)動時,請化簡式子:|x+1|﹣|x﹣1|﹣2|x+4|(請寫出化簡過程)

(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動,若點(diǎn)B以每秒n(n>0)個單位長度的速度向左運(yùn)動,同時,點(diǎn)A和點(diǎn)C分別以每秒2n個單位長度和5n個單位長度的速度向右運(yùn)動,假設(shè)經(jīng)過t秒鐘過后,若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請問:AC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

同步練習(xí)冊答案