【題目】已知 A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多項(xiàng)式 A+B 不含一次項(xiàng),則多項(xiàng)式 A+B 的常數(shù)項(xiàng)是

A. 16 B. 24 C. 34 D. 35

【答案】C

【解析】

首先求出A+B,根據(jù)多項(xiàng)式A+B不含一次項(xiàng),列出方程求出m的值即可解決問題.

解:∵A+B=(3x3+2x2-5x+7m+2)+(2x2+mx-3)

=3x3+2x2-5x+7m+2+2x2+mx-3

=3x2+4x2+(m-5)x+7m-1,

∵多項(xiàng)式A+B不含一次項(xiàng),

m-5=0,

m=5,

∴多項(xiàng)式A+B的常數(shù)項(xiàng)是34,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正數(shù)x的兩個(gè)平方根是2a﹣3與5﹣a,則x的值是(
A.64
B.36
C.81
D.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是AB邊上一點(diǎn),BF=3AF,則下列四個(gè)結(jié)論:

AEF∽△DCE;

②CE平分DCF;

③點(diǎn)B、C、E、F四個(gè)點(diǎn)在同一個(gè)圓上;

④直線EF是DCE的外接圓的切線;

其中,正確的個(gè)數(shù)是(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC= °.

(1)如圖1,若AB//ON,則①∠ABO的度數(shù);②當(dāng)∠BAD=∠ABD時(shí), =;③當(dāng)∠BAD=∠BDA時(shí), =
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )
A.a2+a2=a4
B.a5﹣a3=a2
C.a2a2=2a2
D.(a52=a10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-1,0)、C(0,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).

(1)畫出ABC關(guān)于y軸的軸對(duì)稱圖形A1B1C1

(2)以點(diǎn)O為位似中心,在網(wǎng)格內(nèi)畫出所有符合條件的A2B2C2,使A2B2C2 A1B1C1位似,且位似比為2:1;

(3)求A1B1C1A2B2C2的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生物課題研究小組對(duì)附著在物體表面的三個(gè)微生物(課題組成員把他們分別標(biāo)號(hào)為1,2,3)的生長情況進(jìn)行觀察記錄,這三個(gè)微生物第一天各自一分為二,產(chǎn)生新的微生物(依次被標(biāo)號(hào)為4,5,6,7,8,9),接下去每天都按照這樣的規(guī)律變化,即每個(gè)微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進(jìn)行形象的記錄),那么標(biāo)號(hào)為1000的微生物會(huì)出現(xiàn)在( )

A.第7天
B.第8天
C.第9天
D.第10天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在第四象限,且到x軸的距離是3,到y(tǒng)軸的距離是2,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線a∥b,b∥c,則 , 其理由是

查看答案和解析>>

同步練習(xí)冊(cè)答案