【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】利用拋物線的對稱性得到拋物線與x軸的另一個交點在點(-2,0)和(-1,0)之間,則當x= -1時,y>0,于是可對①進行判斷;利用拋物線的對稱軸為直線x= =1,即b= -2a,則可對②進行判斷;利用拋物線的頂點的縱坐標為n得到,則可對③進行判斷;由于拋物線與直線y=n有一個公共點,則拋物線與直線y= n-1有2個公共點,于是可對④進行判斷.
本題解析: ∵拋物線與x軸的一個交點在點(3,0)和(4,0)之間,而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點在點(2,0)和(1,0)之間.∴當x=1時,y>0,即a-b+c>0,所以①正確;
∵拋物線的對稱軸為直線x==1,即b=2a,∴3a+b=3a2a=a,所以②錯誤;
∵拋物線的頂點坐標為(1,n)∴,∴=4ac4an=4a(cn),所以③正確;
∵拋物線與直線y=n有一個公共點,∴拋物線與直線y=n1有2個公共點,
∴一元二次方程ax2+bx+c=n1有兩個不相等的實數(shù)根,所以④正確。
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經過B(﹣1,0),D(﹣2,5)兩點,與x軸另一交點為A,點H是線段AB上一動點,過點H的直線PQ⊥x軸,分別交直線AD、拋物線于點Q,P.
(1)求拋物線的解析式;
(2)是否存在點P,使∠APB=90°,若存在,求出點P的橫坐標,若不存在,說明理由;
(3)連接BQ,一動點M從點B出發(fā),沿線段BQ以每秒1個單位的速度運動到Q,再沿線段QD以每秒個單位的速度運動到D后停止,當點Q的坐標是多少時,點M在整個運動過程中用時t最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一塊三角板ABC的直角頂點C放在直尺的一邊PQ上,直尺的另一邊MN與三角板的兩邊AC、BC分別交于兩點E、D,且AD為∠BAC的平分線,∠B=300,∠ADE=150.
(1)求∠BDN的度數(shù);
(2)求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AED的頂點D在△ABC的BC邊上,∠E=∠B,AE=AB, ∠EAB=∠DAC.
(1)求證:△AED≌△ABC.
(2)若∠E=40°,∠DAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長54米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為2米的出入口,如圖所示,如何設計才能使園地的而積最大?下面是兩位學生爭議的情境:請根據上面的信息,解決問題:
(1)設AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有、兩地,甲從地去地,乙從地去地然后立即原路返回地,返回時的速度是原來的2倍,如圖是甲、乙兩人離地的距離(千米)和時間(小時)之間的函數(shù)圖象.
請根據圖象回答下列問題:
(1)、兩地的距離是 千米, ;
(2)求的坐標,并解釋它的實際意義;
(3)請直接寫出當取何值時,甲乙兩人相距15千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com