【題目】為了測(cè)量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置一個(gè)平面鏡E,使得B,E,D在同一水平線上(如圖所示).該小組在標(biāo)桿的F處通過平面鏡E恰好觀測(cè)到旗桿頂A(此時(shí)∠AEB=∠FED),在F處測(cè)得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測(cè)得FD2.4米.求旗桿AB的高度約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈

【答案】旗桿AB的高度約為6米.

【解析】

FGABG,設(shè)ABx米,根據(jù)正切的定義求出DE、BE,根據(jù)圖形列式計(jì)算,得到答案.

解:作FGABG,

設(shè)ABx米,

由題意得,四邊形FDBG為矩形,

BGDF2.4FGBD,

FGBD

∴∠FED=∠GFE67°,

RtEDF中,tanFED,

RtAFG中,∠AFG45°

FGAGx2.4,

RtAEB中,tanAEB,即,

由題意得,x2.41+x

解得,x≈6,

答:旗桿AB的高度約為6米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象與正半軸交于點(diǎn),與軸分別交于點(diǎn).若過點(diǎn)作平行于軸的直線交拋物線于點(diǎn)

1)點(diǎn)的橫坐標(biāo)為______

2)設(shè)拋物線的頂點(diǎn)為點(diǎn),連接交于點(diǎn),當(dāng)時(shí),求的取值范圍;

3)當(dāng)時(shí),該二次函數(shù)有最大值3,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α45°,旗桿底端D到大樓前梯坎底邊的距離DC20米,梯坎坡長(zhǎng)BC12米,梯坎坡度i1,則大樓AB的高度為________米.(精確到0.1米,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解題過程:

例:若代數(shù)式,求a的取值.

解:原式=

當(dāng)a<2時(shí),原式=(2-a)+(4-a)=6-2a=2,解得a2(舍去);

當(dāng)2≤a4時(shí),原式=(a-2)+(4-a)=2=2,等式恒成立;

當(dāng)a≥4時(shí),原式=(a-2)+(a-4)=2a62,解得a=4;

所以,a的取值范圍是2≤a≤4

上述解題過程主要運(yùn)用了分類討論的方法,請(qǐng)你根據(jù)上述理解,解答下列問題:

(1)當(dāng)3≤a≤7時(shí),化簡(jiǎn):_________

(2)請(qǐng)直接寫出滿足5a的取值范圍__________;

(3)6,求a的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)為拋物線的頂點(diǎn),點(diǎn)的縱坐標(biāo)為-2

1)如圖1,求此拋物線的解析式;

2)如圖2,點(diǎn)是第一象限拋物線上一點(diǎn),連接,過點(diǎn)軸交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)為,求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)如圖3,在(2)的條件下,點(diǎn)上,且,點(diǎn)的橫坐標(biāo)大于3,連接,,且,過點(diǎn)于點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形,.點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為同時(shí),點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為.過點(diǎn)于點(diǎn),,于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為.解答下列問題:

1)當(dāng)為何值時(shí),?

2)設(shè)五邊形的面積為, 的函數(shù)關(guān)系式;

3)連接.是否存在某一時(shí)刻, 使點(diǎn)的垂直平分線上,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人駕車分別從AB兩地相向而行,乙出發(fā)半小時(shí)后甲出發(fā),甲出發(fā)1.5小時(shí)后汽車出現(xiàn)故障,于是甲停下修車,半小時(shí)后甲修好后繼續(xù)沿原路按原速與乙相遇,相遇后甲隨即調(diào)頭以原速返回A地,乙也繼續(xù)向A地行駛,甲、乙兩車之間的距離(y/千米)與甲駕車時(shí)間x(小時(shí))之間的關(guān)系如圖所示,當(dāng)乙到達(dá)A地時(shí),甲距離B_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于二次函數(shù)yx2+2x+3的圖象有以下說(shuō)法:其中正確的個(gè)數(shù)是( 。

①它開口向下;②它的對(duì)稱軸是過點(diǎn)(﹣1,3)且平行于y軸的直線;③它與x軸沒有公共點(diǎn);④它與y軸的交點(diǎn)坐標(biāo)為(3,0).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與y軸交于C(0,8),且與反比例函數(shù)y=(x0)的圖象在第一象限內(nèi)交于A(3a),B(1b)兩點(diǎn).

⑴求AOC的面積;

⑵若=4,求反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案