如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標為。點P是y軸右側(cè)的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O(shè),C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由;
(3)若存在點P,使∠PCF=450,請直接寫出相應(yīng)的點P的坐標。
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川資陽12分)如圖,四邊形ABCD是平行四邊形,過點A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點為E,連結(jié)CE,點A、B、D的坐標分別為(﹣2,0)、(3,0)、(0,4).
(1)求拋物線的解析式;
(2)已知拋物線的對稱軸l交x軸于點F,交線段CD于點K,點M、N分別是直線l和x軸上的動點,連結(jié)MN,當線段MN恰好被BC垂直平分時,求點N的坐標;
(3)在滿足(2)的條件下,過點M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學(xué)統(tǒng)計了周六該停車場各時段的借、還自行車數(shù),以及停車場整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段 | x | 還車數(shù)(輛) | 借車數(shù)(輛) | 存量y(輛) |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,二次函數(shù)(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).
(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
我們知道,經(jīng)過原點的拋物線解析式可以是。
(1)對于這樣的拋物線:
當頂點坐標為(1,1)時,a= ;
當頂點坐標為(m,m),m≠0時,a 與m之間的關(guān)系式是 ;
(2)繼續(xù)探究,如果b≠0,且過原點的拋物線頂點在直線上,請用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點的拋物線,頂點A1,A2,…,An在直線上,橫坐標依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經(jīng)過點Dn,求所有滿足條件的正方形邊長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
在下列敘述中:
①一組對邊相等的四邊形是平行四邊形;
②函數(shù)y=中,y隨x的增大而減小;
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發(fā)生的概率為0.0001.
正確的敘述有( )
A.0個 | B.1個 | C.2個 | D.3個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
已知反比例函數(shù)y=﹣的圖象上有兩點A(x1,y1),B(x2,y2),若x1<0<x2,則下列判斷正確的是()
A.y1<y2<0 | B.0<y2<y1 | C.y1<0<y2 | D.y2<0<y1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com