【題目】數(shù)學(xué)活動課上,老師提出問題:如圖,有一張長4dm,寬3dm的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.
下面是探究過程,請補(bǔ)充完整:
(1)設(shè)小正方形的邊長為x dm,體積為y dm3,根據(jù)長方體的體積公式得到y和x的關(guān)系式: ;
(2)確定自變量x的取值范圍是 ;
(3)列出y與x的幾組對應(yīng)值.
x/dm | … | … | ||||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | m | 3.0 | 2.8 | 2.5 | n | 1.5 | 0.9 | … |
(4)在下面的平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象如下圖;
結(jié)合畫出的函數(shù)圖象,解決問題:
當(dāng)小正方形的邊長約為 dm時,(保留1位小數(shù)),盒子的體積最大,最大值約為 dm3.(保留1位小數(shù))
【答案】(1) (或);(2);(3)m=3,n=2;(4)~都行,3~3.1都行.
【解析】
根據(jù)題意,列出y與x的函數(shù)關(guān)系式,根據(jù)盒子長寬高值為正數(shù),求出自變量取值范圍;利用圖象求出盒子最大體積.
(1)y=x(42x)(32x)=4x14x+12x
故答案為:y=4x14x+12x
(2)由已知
解得:0<x<
(3)根據(jù)函數(shù)關(guān)系式,當(dāng)x= 時,y=3;當(dāng)x=1時,y=2
(4)根據(jù)圖象,當(dāng)x=0.55dm時,盒子的體積最大,最大值約為3.03dm3
故答案為:~都行,3~3.1都行
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2018個等腰直角三角形的斜邊長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片沿折疊,點落在邊上的點處,點與點重合, 與交于點,取的中點,連接,則的周長最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC關(guān)于AB所在的直線對稱,點M為邊AC上的一個動點(重合),點M關(guān)于AB所在直線的對稱點為N,△CMN的面積為S.
(1)求∠CAD的度數(shù);
(2)設(shè)CM=x,求S與x的函數(shù)表達(dá)式,并求x為何值時S的值最大?
(3)S的值最大時,過點C作EC⊥AC交AB的延長線于點E,連接EN(如圖2),P為線段EN上一點,Q為平面內(nèi)一點,當(dāng)以M,N,P,Q為頂點的四邊形是菱形時,請直接寫出所有滿足條件NP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點A(,n)和B.
(1)求k的值和點B的坐標(biāo);
(2)如果P是x軸上一點,且AP=AB,直接寫出點P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉(zhuǎn)得到△CD′E′,及旋轉(zhuǎn)角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當(dāng) AD′∥CE′時,求α的大小;
(2)如圖②,若 90°<α<180°,當(dāng)點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標(biāo)m的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點E是∠AOB的平分線上一點,ED⊥OA,EC⊥OB,垂足分別為C、D.
求證:(1)OC=OD;
(2)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司研發(fā)出一款多型號的智能手表,一家代理商出售該公司的型智能手表,去年銷售總額為80000元,今年型智能手表的售價每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷售總額將比去年減少.
(1)求今年型智能手表每只售價多少元?
(2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價與銷售價格如下表所示,若型智能手表進(jìn)貨量不超過型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請你設(shè)計出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤是多少元?
型智能手表 | 型智能手表 | |
進(jìn)價 | 1300元/只 | 1500元/只 |
售價 | 今年的售價 | 2300元/只 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com