【題目】如圖,△ABC中,AD⊥BC于D,下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
根據(jù)已知對(duì)各個(gè)條件進(jìn)行分析,從而得到答案.
(1)不能,∵AD⊥BC,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC,∴無法證明△ABC是直角三角形;
(2)能,∵∠B=∠DAC,則∠BAD=∠C,∴∠B+∠BAD=∠C+∠DAC=180°÷2=90°;
(3)能
∵CD:AD=AC:AB,∠ADB=∠ADC=90°,
∴Rt△ABD∽Rt△CAD(直角三角形相似的判定定理),
∴∠ABD=∠CAD;∠BAD=∠ACD
∵∠ABD+∠BAD=90°
∴∠CAD+∠BAD=90°
∵∠BAC=∠CAD+∠BAD
∴∠BAC=90°;
(4)能,∵能說明△CBA∽△ABD,∴△ABC一定是直角三角形.
共有3個(gè).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,OA=OB,點(diǎn)B的坐標(biāo)為(1,0),AB=,線段OB上的動(dòng)點(diǎn)(點(diǎn)C不與O、B重合),連接AC,作AC⊥CD,作DE⊥x軸,垂足為點(diǎn)E.
(1)求證:△ACO≌△CDE;
(2)猜想△BDE的形狀,并證明結(jié)論:
(3)如圖2,當(dāng)△BCD為等腰三角形時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1所示,在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在斜邊AB上,點(diǎn)E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.
(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點(diǎn)E在BC上,連接AE,過點(diǎn)E作EF⊥AE交CD(或CD的延長(zhǎng)線)于點(diǎn)F.
①若BE:EC=1:9,求CF的長(zhǎng);
②若點(diǎn)F恰好與點(diǎn)D重合,請(qǐng)?jiān)趥溆脠D上畫出圖形,并求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,BC=3,∠A=22.5°,將△ABC翻折使得點(diǎn)B與點(diǎn)A重合,折痕與邊AC交于點(diǎn)P,如果AP=4,那么AC的長(zhǎng)為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AD⊥BC,點(diǎn)D為垂足,AD=BD,點(diǎn)E在AD上,BE=AC
(1)求證:△BDE≌△ADC
(2)若M、N分別是BE、AC的中點(diǎn),分別聯(lián)結(jié)DM、DN. 求證:DM⊥DN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC中點(diǎn)連接AE,DF⊥AE于點(diǎn)F,連接CF,F(xiàn)G⊥CF交AD于點(diǎn)G,下列結(jié)論:①CF=CD;②G為AD中點(diǎn);③△DCF∽△AGF;④,其中結(jié)論正確的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,P為AB邊上一點(diǎn),將△BCP沿CP折疊,得到△FCP.
(1)如圖1,延長(zhǎng)PF交AD于E,求證:EF=ED;
(2)如圖2,DF,CP的延長(zhǎng)線交于點(diǎn)G,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣活動(dòng)課上,小明將等腰△ABC的底邊BC與直線1重合,問:
(1)已知AB=AC=6,∠BAC=120°,點(diǎn)P在BC邊所在的直線l上移動(dòng),根據(jù)“直線外一點(diǎn)到直線上所有點(diǎn)的連線中垂線段最短”,小明發(fā)現(xiàn)AP的最小值是 ;
(2)為進(jìn)一步運(yùn)用該結(jié)論,小明發(fā)現(xiàn)當(dāng)AP最短時(shí),在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于點(diǎn)D,點(diǎn)E、F分別是AD、AP邊上的動(dòng)點(diǎn),連接PE、EF,小明嘗試探索PE+EF的最小值,為轉(zhuǎn)化EF,小明在AB上截取AN,使得AN=AF,連接NE,易證△AEF≌△AEN,從而將PE+EF轉(zhuǎn)化為PE+EN,轉(zhuǎn)化到(1)的情況,若BP=3,AB=6,AP=3,則PE+EF的最小值為 ;
(3)請(qǐng)應(yīng)用以上轉(zhuǎn)化思想解決問題(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,點(diǎn)D是CD邊上的動(dòng)點(diǎn),連接AD,將線段AD順時(shí)針旋轉(zhuǎn)60°,得到線段AP,連接CP,求線段CP的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com