【題目】四邊形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分別找一點M、N,使△AMN的周長最小時,∠AMN+∠ANM的度數(shù)為_______
【答案】144°
【解析】
根據(jù)要使△AMN的周長最小,即利用點的對稱,讓三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=60°,進而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.
解:作A關(guān)于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值.
∵四邊形ABCD中,∠B=∠D=90°,∠C=72°
∴∠DAB=108°,
∴∠AA′M+∠A″=72°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,
故填:144°.
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】公元初,中美洲馬雅人使用的一種數(shù)字系統(tǒng)與其他計數(shù)方式都不相同,它采用二十進位制但只有3個符號,用點“”、劃“—”、卵形“”來表示我們所使用的自然數(shù),如自然數(shù)1-19的表示見下表,另外在任何數(shù)的下方加一個卵形,就表示把這個數(shù)擴大到它的20倍,如表中20和100的表示.
(1)瑪雅符號表示的自然數(shù)是哪個數(shù);
(2)請你畫出表示自然數(shù)280的瑪雅符號.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于兩點,與直線交于點C(4,2).
(1)點A坐標為( , ),B為( , );
(2)在線段上有一點E,過點E作y軸的平行線交直線于點F,設(shè)點E的橫坐標為m,當m為何值時,四邊形是平行四邊形;
(3)若點P為x軸上一點,則在平面直角坐標系中是否存在一點Q,使得四個點能構(gòu)成一個菱形.若存在,求出所有符合條件的Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+b x+c經(jīng)過A,B,C三點,當x≥0時,其圖象如圖所示.
(1)求拋物線的解析式,寫出拋物線的頂點坐標;
(2)畫出拋物線y=ax2+b x+c當x<0時的圖象;
(3)利用拋物線y=ax2+b x+c,寫出x為何值時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為原點,A. B為數(shù)軸上兩點,AB=15,且OA:OB=2.
(1)A、B對應的數(shù)分別為___、___;
(2)點A. B分別以4個單位/秒和3個單位/秒的速度相向而行,則幾秒后A. B相距1個單位長度?
(3)點A. B以(2)中的速度同時向右運動,點P從原點O以7個單位/秒的速度向右運動,是否存在常數(shù)m,使得4AP+3OBmOP為定值,若存在請求出m值以及這個定值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A .在函數(shù)y=-x2中,當x=0時y有最大值0
B.在函數(shù)y=2x2中,當x>0時y隨x的增大而增大
C.拋物線y=2x2,y=-x2,中,拋物線y=2x2的開口最小,拋物線y=-x2的開口最大
D.不論a是正數(shù)還是負數(shù),拋物線y=ax2的頂點都是坐標原點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB和△ACD是等邊三角形,其中AB⊥x軸于E點,點E坐標為(3,0),點C(5,0).
(1)如圖①,求BD的長;
(2)如圖②,設(shè)BD交x軸于F點,求證:∠OFA=∠DFA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面文字:
對于(﹣5)+(﹣9)+17 +(﹣3)
可以如下計算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)
=﹣1
上面這種方法叫拆項法,你看懂了嗎?
仿照上面的方法,請你計算:(﹣1)+(﹣2000)+4000+(﹣1999)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com