【題目】如圖,AB是圓O的直徑,點(diǎn)CBA的延長(zhǎng)線上,直線CD與圓O相切于點(diǎn)D,弦DFAB于點(diǎn)E,連接BD,CDBD4,則OE的長(zhǎng)度為( )

A.B.2C.2D.4

【答案】B

【解析】

連結(jié)OD,根據(jù)切線的性質(zhì)得∠ODC90°,根據(jù)等腰三角形的性質(zhì)得出∠B∠C∠ODB,于是可根據(jù)三角形外角性質(zhì)得∠DOE2∠B2∠C,進(jìn)而求得∠DOE60°,解直角三角形即可求得OE.

解:連結(jié)OD,如圖,

直線CD⊙O相切于點(diǎn)D,

∴OD⊥CD,

∴∠ODC90°

∵CDBD,

∴∠C∠B,

∵ODOB,

∴∠B∠ODB,

∴∠DOE∠B+∠ODB2∠B

∴∠DOE2∠C

Rt△OCD中,∠DOE2∠C,則∠DOE60°∠C30°,

∵CD4

∴OD×44,

∵DF⊥AB∠DOE60°,

∴OE×42,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)yax2+bx+ca0)中的xy滿足下表:

x

0

1

2

3

4

5

y

3

0

1

0

m

8

1m的值為   

2)拋物線yax2+bx+c的對(duì)稱軸為   ;

3)這個(gè)二次函數(shù)的解析式為   ;

4)當(dāng)0x3時(shí),則y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明:同弧所對(duì)的圓周角等于它所對(duì)圓心角度數(shù)的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以ABAP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長(zhǎng)交BP于點(diǎn)F. 試說明:(1)△ABP≌△AEQ;(2)EFBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,AB=4BC=5,∠ACB=45°,將ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到A1BC1

1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若ABA1的面積為4,求CBC1的面積;

3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地之間路程為4500米,甲、乙兩人騎車都從A地出發(fā),已如甲先出發(fā)6分鐘后,乙才出發(fā),乙在AB之間的C地追趕上甲,當(dāng)乙追趕上甲后,乙立即返A地,甲繼續(xù)向B地前行.甲到達(dá)B地后停止騎行.乙騎行到A地時(shí)也停止(假定乙在C地掉頭的時(shí)間忽略不計(jì)),在整個(gè)騎行過程中,甲和乙均保持各自的速度勻速騎行,甲、乙兩人相距的路程y()與甲出發(fā)的時(shí)間x(分鐘)之間的關(guān)系如圖所示,則乙到達(dá)A地時(shí),甲與B地相距的路程是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2x4x軸于AB兩點(diǎn),交y軸于點(diǎn)C.

(1)點(diǎn)P為線段BC下方拋物線上的任意一點(diǎn),一動(dòng)點(diǎn)G從點(diǎn)P出發(fā)沿適當(dāng)路徑以每秒1個(gè)單位長(zhǎng)度運(yùn)動(dòng)到y軸上一點(diǎn)M,再沿適當(dāng)路徑以每秒1個(gè)單位長(zhǎng)度運(yùn)動(dòng)到x軸上的點(diǎn)N,再沿x軸以每秒個(gè)單位長(zhǎng)度運(yùn)動(dòng)到點(diǎn)B.當(dāng)四邊形ACPB面積最大時(shí),求運(yùn)動(dòng)時(shí)間t的最小值;

(2)過點(diǎn)CAC的垂線交x軸于點(diǎn)D,將△AOC繞點(diǎn)O旋轉(zhuǎn),旋轉(zhuǎn)后點(diǎn)AC的對(duì)應(yīng)點(diǎn)分別為A1、C1,在旋轉(zhuǎn)過程中直線A1C1x軸交于點(diǎn)Q.與線段CD交于點(diǎn)I.當(dāng)△DQI是等腰三角形時(shí),直接寫出DQ的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,點(diǎn)DAB上,以AD為直徑的⊙OBC相交于點(diǎn)E,與AC相交于點(diǎn)F,AE平分∠BAC

1)求證:BC是⊙O的切線.

2)若∠EAB30°,OD3,求圖中陰影部分的面積.

3)若AD5AE4,求AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)的圖像分別交于點(diǎn)和點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn).若點(diǎn)軸上一動(dòng)點(diǎn),當(dāng)相似時(shí),則點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案