【題目】甲、乙兩工程隊(duì)分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中: ①甲隊(duì)每天挖100米;
②乙隊(duì)開挖兩天后,每天挖50米;
③甲隊(duì)比乙隊(duì)提前3天完成任務(wù);
④當(dāng)x=2或6時,甲乙兩隊(duì)所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)
【答案】①②④
【解析】解:①根據(jù)函數(shù)圖象得: 甲隊(duì)的工作效率為:600÷6=100米/天,故正確;②根據(jù)函數(shù)圖象,得
乙隊(duì)開挖兩天后的工作效率為:(500﹣300)÷(6﹣2)=50米/天,故正確;③乙隊(duì)完成任務(wù)的時間為:2+(600﹣300)÷50=8天,
∴甲隊(duì)提前的時間為:8﹣6=2天.
∵2≠3,
∴③錯誤;④當(dāng)x=2時,甲隊(duì)完成的工作量為:2×100=200米,
乙隊(duì)完成的工作量為:300米.
當(dāng)x=6時,甲隊(duì)完成的工作量為600米,乙隊(duì)完成的工作量為500米.
∵300﹣200=600﹣500=100,
∴當(dāng)x=2或6時,甲乙兩隊(duì)所挖管道長度都相差100米.故正確.
故答案為:①②④.
①根據(jù)函數(shù)圖象由工作效率=工作總量÷工作時間就可以得出結(jié)論;②根據(jù)函數(shù)圖象由工作效率=工作總量÷工作時間就可以得出結(jié)論;③根據(jù)函數(shù)圖象求出乙隊(duì)完成的時間就可以求出結(jié)論;④由甲的工作效率就可以求出2天時的工作量為200米,乙隊(duì)是300米.6天時甲隊(duì)是600米,乙隊(duì)是500米得出300﹣200=600﹣500=100米故得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如 …,任何一個單位分?jǐn)?shù)都可以拆分成兩個不同的單位分?jǐn)?shù)的和,如 , , …觀察上述式子的規(guī)律:
(1)把 寫成兩個單位分?jǐn)?shù)之和;
(2)把 表示成兩個單位分?jǐn)?shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】﹣xn與(﹣x)n的正確關(guān)系是( )
A.相等
B.互為相反數(shù)
C.當(dāng)n為奇數(shù)時它們互為相反數(shù),當(dāng)n為偶數(shù)時相等
D.當(dāng)n為奇數(shù)時相等,當(dāng)n為偶數(shù)時互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到A1與點(diǎn)A2距離之和最小,請直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)是( )
A.5或6或7 B.6或7 C.6或7或8 D.7或8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)A、B外的任意一點(diǎn),分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)求證:MN∥AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com