精英家教網 > 初中數學 > 題目詳情
(2011•濱州)如圖,在△ABC中,點O是AC邊上(端點除外)的一個動點,過點O作直線MN∥BC.設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F,連接AE、AF.那么當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
當點O運動到AC的中點(或OA=OC)時,四邊形AECF是矩形.
證明:∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO,
又∵OA=OC,
∴四邊形AECF是平行四邊形,
又∵∠1=∠2,∠4=∠5,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴四邊形AECF是矩形.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

(12分)如圖,已知△ABC和△DEF是兩個邊長都為10cm的等邊三角形,且B、D、C、E都在同一條直線上,連接AD、CF.

(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運動,設△ABC運動的時間為t秒,
①當t為何值時,平行四邊形ADFC是菱形?請說明理由;
②平行四邊形ADFC有可能是矩形嗎?若可能,求出t的值;若不可能,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(11·肇慶)(本小題滿分8分)
如圖8.矩形ABCD的對角線相交于點O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而積為,求AC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

(11·欽州)如圖,在梯形ABCD中,ABCD,AB=3CD,對角線AC、BD交于點O,中位線EFAC、BD分別交于MN兩點,則圖中陰影部分的面積是梯形ABCD面積的
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

(2011•南充)如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,下列結論:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正確結論的個數是( 。
A.1個B.2個
C.3個D.4個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

(2011?福州)如圖,直角梯形ABCD中,AD∥BC,∠C=90°,則∠A+∠B+∠C=   度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(2011•重慶)如圖,矩形ABCD中,AB=6,BC=2,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點發(fā)發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當兩點相遇時停止運動,在點E、F的運動過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側.設運動的時間為t秒(t≥0).
(1)當等邊△EFG的邊FG恰好經過點C時,求運動時間t的值;
(2)在整個運動過程中,設等邊△EFG和矩形ABCD重疊部分的面積為S,請直接寫出S與t之間的函數關系式和相應的自變量t的取值范圍;
(3)設EG與矩形ABCD的對角線AC的交點為H,是否存在這樣的t,使△AOH是等腰三角形?若存大,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(2011•北京)閱讀下面材料:
小偉遇到這樣一個問題,如圖1,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O.若梯形ABCD的面積為1,試求以AC,BD,AD+BC的長度為三邊長的三角形的面積.

小偉是這樣思考的:要想解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他先后嘗試了翻折,旋轉,平移的方法,發(fā)現通過平移可以解決這個問題.他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC,BD,AD+BC的長度為三邊長的三角形(如圖2).
參考小偉同學的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD,BE,CF.
(1)在圖3中利用圖形變換畫出并指明以AD,BE,CF的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD,BE,CF的長度為三邊長的三角形的面積等于_____.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖9,等腰梯形ABCD的邊BCx軸上,點Ay軸的正方向上,A( 0, 6 ),D ( 4,6),且AB.

(1)求點B的坐標;
(2)求經過A、B、D三點的拋物線的解析式;
(3)在(2)中所求的拋物線上是否存在一點P,

圖9

 
使得?若存在,請求出該點坐標,

若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案