【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°△DBE后,再把△ABC沿射線平移至△FEG,DEFG相交于點(diǎn)H

1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;

2)連結(jié)CG,求證:四邊形CBEG是正方形.

【答案】見(jiàn)解析

【解析】試題分析: (1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進(jìn)而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直;(2)根據(jù)旋轉(zhuǎn)和平移找出對(duì)應(yīng)線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.

試題解析:

(1)解:FGED.理由如下:

∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至DBE后,∴∠DEB=∠ACB,

∵把ABC沿射線平移至FEG,∴∠GFE=∠A,∵∠ABC=90°,

∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FGED;

(2)證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CGEB,CB=BE,

CGEB,∴∠BCG=∠CBE=90°,∴四邊形BCGE是矩形,∵CB=BE

∴四邊形CBEG是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形的周長(zhǎng)為,兩個(gè)鄰角的比是,則這個(gè)菱形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己如FGAB,、CDAB,垂足分別為GD,∠1=∠2

求證:∠CED+∠ACB180°請(qǐng)將下面的證明過(guò)程補(bǔ)充完整.

證明:∵FGAB,CDAB(已知),

∴∠FGB=∠CDB90°(垂直的定義)

GFCD(___________________________)

GFCD(已證)

∴∠2=∠BCD(___________________________)

又∵∠1=∠2(已知)

∴∠1=∠BCD(___________________________)

___________________________,(___________________________)

∴∠CED+∠ACB180°___________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過(guò)點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單 位:s)(0<t<)。

(1)如圖1,連接DQ平分∠BDC時(shí),t的值為      ;

(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;

(3)請(qǐng)你繼續(xù)進(jìn)行探究,并解答下列問(wèn)題:

①證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)O始終在QM所在直線的左側(cè);

②如圖3,在運(yùn)動(dòng)過(guò)程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,過(guò)點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)E和F過(guò)點(diǎn)E作EGBC,交AB于G,則圖中相似三角形有(

A4對(duì) B5對(duì) C6對(duì) D7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過(guò)點(diǎn),連接.

1)求證:四邊形為菱形;

2)當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn),也隨之移動(dòng).

①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖),求菱形的邊長(zhǎng);

②若限定,分別在邊,上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案