21、如圖,已知點P是邊長為4的正方形ABCD內(nèi)一點,且PB=3,BF⊥BP,垂足是B.
(1)利用尺規(guī)作圖,試在射線BF上找一點M,使得△ABP≌△CBM.
(2)求證:△ABP≌△CBM.
分析:(1)在射線BF上截取BM=BP即可作出;
(2)根據(jù)SAS即可證得.
解答:(1)在射線BF上截取BM=BP.
(2)∵∠ABC=∠PBM=90°,即∠ABP+∠PBC=∠CBM+∠PBC
∴∠ABP=∠CBM
∵AB=BC,BP=BM
∴△ABP≌△CBM.
點評:本題主要考查了正方形的性質(zhì),以及三角形的全等,證得∠ABP=∠CBM是證明的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點P是邊長為4的正方形ABCD內(nèi)的一點,且PB=3,BF⊥BP,若在射線BF有一點M,使以點B,M,C為頂點的三角形與△ABP相似,那么BM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點P是邊長為5的正方形ABCD內(nèi)一點,且PB=3,BF⊥BP于B,若在射線BF上找一點M,使以點B,M,C為頂點的三角形與△ABP相似,BM的值為(  )
A、3
B、
25
3
C、3或
25
3
D、3或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點P是邊長為5的正方形ABCD內(nèi)的一點,連結(jié)PA,PB,PC,若PA=2,PB=4,∠APB=135°.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°,畫出△P′CB的位置.
(2)①求PC的長;
②求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點P是邊長為2的正三角形ABC的中線AD上的動點,E是AC邊的中點,則PC+PE的最小值是
3
3

查看答案和解析>>

同步練習(xí)冊答案