精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y=﹣ x2+bx+c與坐標軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C,D同時出發(fā),當動點D到達原點O時,點C,D停止運動.

(1)直接寫出拋物線的解析式:
(2)求△CED的面積S與D點運動時間t的函數解析式;當t為何值時,△CED的面積最大?最大面積是多少?
(3)當△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標;若不存在,請說明理由.

【答案】
(1)y=﹣ x2+3x+8
(2)

解:∵點A(0,8)、B(8,0),

∴OA=8,OB=8,

令y=0,得:﹣ x2+3x+8=0,

解得:x1=8,x2=﹣2,

∵點E在x軸的負半軸上,

∴點E(﹣2,0),

∴OE=2,

根據題意得:當D點運動t秒時,BD=t,OC=t,

∴OD=8﹣t,

∴DE=OE+OD=10﹣t,

∴S= DEOC= (10﹣t)t=﹣ t2+5t,

即S=﹣ t2+5t=﹣ (t﹣5)2+

∴當t=5時,S最大=


(3)

解:方法一:

由(2)知:當t=5時,S最大=

∴當t=5時,OC=5,OD=3,

∴C(0,5),D(3,0),

由勾股定理得:CD= ,

設直線CD的解析式為:y=kx+b,

將C(0,5),D(3,0),代入上式得:

k=﹣ ,b=5,

∴直線CD的解析式為:y=﹣ x+5,

過E點作EF∥CD,交拋物線與點P,如圖1,

設直線EF的解析式為:y=﹣ x+b,

將E(﹣2,0)代入得:b=﹣

∴直線EF的解析式為:y=﹣ x﹣ ,

將y=﹣ x﹣ ,與y=﹣ x2+3x+8聯立成方程組得:

,

解得: ,

∴P( ,﹣ );

過點E作EG⊥CD,垂足為G,

∵當t=5時,SECD= = ,

∴EG= ,

過點D作DN⊥CD,垂足為N,且使DN= ,過點N作NM⊥x軸,垂足為M,如圖2,

可得△EGD∽△DMN,

即: ,

解得:DM=

∴OM= ,

由勾股定理得:MN= = ,

∴N( ),

過點N作NH∥CD,與拋物線交與點P,如圖2,

設直線NH的解析式為:y=﹣ x+b,

將N( ),代入上式得:b=

∴直線NH的解析式為:y=﹣ x+ ,

將y=﹣ x+ ,與y=﹣ x2+3x+8聯立成方程組得:

,

解得: ,

∴P(8,0)或P( , ),

綜上所述:當△CED的面積最大時,在拋物線上存在點P(點E除外),使△PCD的面積等于△CED的最大面積,點P的坐標為:P( ,﹣ )或P(8,0)或P( , ).

方法二:

由(2)知,C(0,5),D(3,0),∴l(xiāng)CD:y=﹣ x+5,

作PH⊥x軸,交CD于點H,

∵P在拋物線上,∴設P(6m,﹣18m2+18m+8),

∴H(6m,﹣10m+5),C(0,5),D(3,0),

SPCD= |(DX﹣CX)(PY﹣HY)|,

∵SCED=

,

∴3×|18m2﹣28m﹣3|=25,

①3×(18m2﹣28m﹣3)=25,

∴m1=﹣ ,m2=

∴6m1=﹣2(舍),6m2=

②3×(18m2﹣28m﹣3)=﹣25,

∴m1= ,m2=

∴6m1=8,6m2= ,

綜上所述,點P的坐標為:P( ,﹣ )或P(8,0)或P( ,


【解析】解:(1)將點A(0,8)、B(8,0)代入拋物線y=﹣ x2+bx+c得: ,
解得:b=3,c=8,
∴拋物線的解析式為:y=﹣ x2+3x+8,
所以答案是:y=﹣ x2+3x+8;
【考點精析】本題主要考查了二次函數的圖象和二次函數的性質的相關知識點,需要掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.

(1)求該拋物線的解析式;
(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.
(3)在拋物線的第二象限圖象上是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,PBD上一點,過點PPM^AD,PN^CD,垂足分別為MN。

1)求證:ADB=CDB;

2)若ADC=90°,求證:四邊形MPND是正方形。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AD,BE分別是BC,AC邊上的高.求證:△DCE∽△ACB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形紙片△ABC,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,折痕為BD(點D在線段AC上且不與A、C重合).若點C落在AB邊下方的點E處,則△ADE的周長p的取值范圍是(

A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列汽車標志中,是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.

(1)如圖,若α=21°,ABC=32°,且APBC于點P,試探究線段AB、ACPB之間的數量關系,并對你的結論加以證明;

(2)如圖,若∠ABC=60°-α,點P在△ABC的內部,且使∠CBP=30°,直接寫出∠APC的度數________(用含α的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在四邊形ABCDA為直角,AB=16,BC=25,CD=15,AD=12,

(1)試說明BDCD

(2)求四邊形ABCD的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形AOBC中,點A的坐標是(﹣2,1),點C的縱坐標是4,則B、C兩點的坐標分別是(
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( )、(﹣ ,4)
D.( , )、(﹣ ,4)

查看答案和解析>>

同步練習冊答案