【題目】在平面直角坐標(biāo)系中,若點(diǎn)P的坐標(biāo)為,則定義: 為點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”.
(1)若已知P(-2,3),則點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(-2,3)= ;
(2)若點(diǎn)P(x,y)滿足2x+y=0,且點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(x,y)=6,求出P的坐標(biāo);
(3)若點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(x,y)=3,試在坐標(biāo)系內(nèi)畫出所有滿足條件的點(diǎn)P構(gòu)成的圖形,并求出該圖形的所圍成封閉區(qū)域的面積.
【答案】(1)5;(2)(2,-4),(-2,4),(6,-12)或(-6,12);(3)畫圖見解析,面積為18.
【解析】試題分析:(1)根據(jù)定義求出即可;(2)由d(x,y)==6,再由2x+y=0兩式求出x、y;(3)由d(x,y)==3,得出①y=-x+3;②y=x-3;③y=x+3;④y=-x-3.分別畫出四條直線,再求圍成面積.
解:(1)d(-2,3)==5;
(2)由d(x,y)==6,又2x+y=0,則①解得②解得③解得④解得則點(diǎn)P坐標(biāo)為(2,-4)、(-2,4)、(6,-12)或(-6,12);
(3)由d(x,y)==3,則①x+y=3,得y=-x+3;②x-y=3,得y=x-3;③-x+y=3,得y=x+3;④-x-y=3,得y=-x-3.
畫出圖象為
圍成區(qū)域面積為4××3×3=18.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC邊的中點(diǎn),過D點(diǎn)分別作DE∥AB交AC于點(diǎn)E,DF∥AC交AB于點(diǎn)F.
求證:BF=DE.
【答案】證明見解析
【解析】試題分析:根據(jù)兩組對邊分別平行的四邊形為平行四邊形可判定四邊形AFDE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得DE=AF,再由D為BC邊的中點(diǎn),DF∥AC,可得BF=AF,即可得BF=DE.
試題解析:
∵DE∥AB,DF∥AC,
∴DE∥AF,DF∥AE,
∴四邊形AFDE是平行四邊形,
∴DE=AF,
∵D為BC邊的中點(diǎn),
∴BD=DC,∵DF∥AC,
∴BF=AF,
∴BF=DE.
【題型】解答題
【結(jié)束】
26
【題目】如圖,已知:∠C=∠D,OD=OC.求證:DE=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 過一點(diǎn)有且只有一條直線與已知直線平行.
B. 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直.
C. 有公共頂點(diǎn)且有一條公共邊的兩個(gè)角互為鄰補(bǔ)角.
D. 相等的兩個(gè)角是對頂角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說法,正確的是
________________ (寫出所有正確說法的序號)
①方程x2-x-2=0是倍根方程.
②若(x-2)(mx+n)=0是倍根方程,則4m2+5mn+n2=0;
③若點(diǎn)(p,q)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程px2+3x+q=0是倍根方程;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在演唱比賽中,5位評委給一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,則這位歌手的平均得分是分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)兩條直線被第三條直線所截,同位角相等;
(2)相等的角是對頂角;
(3)同一平面內(nèi),一條直線和兩條平行線中的一條相交,則它與另一條也相交;
(4)從直線外一點(diǎn)到這條直線的垂線段,叫做該點(diǎn)到直線的距離;
(5)不相交的兩條直線叫做平行線.
其中真命題的個(gè)數(shù)是( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com