【題目】如圖(1), 已知△ABC, BAC=900, AB=AC, AE是過A的一條直線, B、CA、E的異側(cè), BDAED, CEAEE

1)試說明: BD=DE+CE.

2)若直線AEA點旋轉(zhuǎn)到圖(2)位置時(BD<CE), 其余條件不變, BDDE、CE的關系如何? 為什么?

3)若直線AEA點旋轉(zhuǎn)到圖(3)位置時(BD>CE), 其余條件不變, BDDE、CE的關系如何? 直接寫出結(jié)果, 不需說明.

【答案】(1)見詳解;(2)見詳解;(3 BD=DE-EC.

【解析】

1)證明ABD≌△CAE,即可證得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可證得;

2)證明ABD≌△CAE,即可證得BD=AEAD=CE,而AE= DE- AD= DE- CE,即可證得;

3)證明ABD≌△CAE,即可證得BD=AE,AD=CE,而AE= DE- AD= DE- CE,即可證得.

1)證明:∵∠BAD+DAC=90

ECA+CAD=90

∴∠BAD=ACE

又∵∠ADB=AEC=90,AB=AC

∴⊿BAD≌⊿ACE

BD=AEAD=CE

BD=AD+DE=CE+DE

2)∵∠DAB+EAC=90

DBA+DAB=90

∴∠DBA=AEC

又∵AB=AC,∠BDA=AEC=90

∴⊿BDA≌⊿AEC

DB=AEDA=EC,

AE= DE- AD,

BD=DE-EC

3)∵∠DAB+EAC=90,∠DBA+DAB=90

∴∠DBA=AEC

又∵AB=AC,∠BDA=AEC=90

∴⊿BDA≌⊿AEC

DB=AE,DA=EC

AE= DE- AD

BD=DE-EC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》中有一道蕩秋干的問題,其譯文為:有一架秋千,當它靜止時,踏板上一點A離地1尺,將它往前推送10(水平距離)時,點A對應的點B就和某人一樣高,若此人的身高為5尺,秋干的繩索始終拉得很直,試問繩素有多長?根據(jù)上述條件,秋干繩索長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEBD的高,AE,BD交于點C,AE=BE,BD平分.

(1)求證:BC=2AD

(2)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC是邊長為5cm的等邊三角形,點PQ分別從頂點A,B同時出發(fā),沿線段AB,BC運動,且它們的是速度都為1厘米/秒.當點P到達點B時,P、Q兩點停止運動.設點P的運動時間為t(秒).

1)當運動時間為t秒時,BQ的長為_____厘米,BP的長為______厘米.(用含t的式子表示)

2)當t為何值時,PBQ是直角三角形.

3)如圖2,連接AQ、CP,相交于點M,則點P,Q在運動的過程中,∠CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,ABx軸于點B,ACy軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當QE:DP=9:25時,圖中的陰影部分的面積等于___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,BC邊上的高AG平分∠BAC.

(1)如圖1,求證:ABAC.

(2)如圖2,點D、E在△ABC的邊BC上,ADAEBC10cm,DE6cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接MN,則在點M運動過程中,線段MN長度的最小值是( 。

A. B. 1 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案