【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長線于點F.
(1)求證:∠FAD=∠FDA;
(2)若∠B=50°,求∠CAF的度數(shù).

【答案】
(1)解:∵AD的垂直平分線交BC的延長線于點F,

∴AF=DF,

∴∠FAD=∠FDA


(2)解:∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,

∵AD平分∠BAC,

∴∠BAD=∠CAD,

∴∠FAC=∠B=50°.

故答案為:50°


【解析】(1)根據(jù)線段垂直平分線得出AF=DF,根據(jù)等腰三角形的性質(zhì)推出∠FAD=∠FDA,(2)根據(jù)角平分線得出∠BAD=∠CAD,根據(jù)三角形外角性質(zhì)推出即可.
【考點精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中任意一點P(x0 , y0),經(jīng)平移后對應(yīng)點為P1(x0+3,y0﹣3),將△ABC作同樣平移得到△DEF.
(1)求△ABC的面積;
(2)請寫出D,E,F(xiàn)的坐標(biāo),并在圖中畫出△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中自主招生考試只考數(shù)學(xué)和物理,數(shù)學(xué)與物理成績按73計入綜合成績.已知小明數(shù)學(xué)成績?yōu)?/span>95分,綜合成績?yōu)?/span>92分,那么小明的物理成績?yōu)?/span>_____分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.過點A作AF⊥AB,并截取AF=BD,連接DC,DF,CF.
(1)判斷△CDF的形狀并證明.
(2)若BC=6,AF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(x﹣2)x+4=1,則x的值可以是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組: 的解集在數(shù)軸上表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi),不重合的兩條直線的位置關(guān)系是( )

A平行 B相交 C平行或相交 D平行、相交或垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).

例如:求9156的最大公約數(shù)

解:

請用以上方法解決下列問題:

1)求10845的最大公約數(shù);

2)求三個數(shù)78104、143的最大公約數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,池塘邊有一塊長為20米,寬為12米的長方形土地,現(xiàn)在將其余三面留出寬都是x米的小路,中間余下的長方形部分做菜地,用代數(shù)式表示:

(1)菜地的長a=米,寬b=米;
(2)菜地的面積S=平方米;
(3)求當(dāng)x=2米時,菜地的面積.

查看答案和解析>>

同步練習(xí)冊答案