【題目】如圖,菱形ABCD的周長為8,高AE長為 ,則AC:BD=(
A.1:2
B.1:3
C.1:
D.1:

【答案】D
【解析】解:如圖,
設(shè)AC,BD相較于點O,
∵菱形ABCD的周長為8,
∴AB=BC=2,
∵高AE長為 ,
∴BE= =1,
∴CE=BE=1,
∴AC=AB=2,
∵OA=1cm,AC⊥BD,
∴OB= =
∴BD=2OB=2 ,
∴AC:BD=1:
故選D.
【考點精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一長方形花園用來種植菊花和郁金香,其余作為休息區(qū);

(1)求種植菊花和郁金香的面積;

(2)m,m時,種植菊花和郁金香的面積是多少m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測站點檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了天的空氣質(zhì)量情況;
(2)請將條形統(tǒng)計圖補充完整;;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質(zhì)量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個等式:3+2=3×2-1,4+=4×-1,給出定義如下:

我們稱使等式a+b=ab-1成立的一對有理數(shù)a,b為“椒江有理數(shù)對”,記為(a,b),如:數(shù)對(3,2),(4,)都是“椒江有理數(shù)對”.

(1)數(shù)對(-2,1),(5,)中是“椒江有理數(shù)對”的是

(2)若(a,3)是“椒江有理數(shù)對”,求a的值;

(3)若(m,n)是“椒江有理數(shù)對”,則(-n,-m) “椒江有理數(shù)對”(填“是”、“不是”或“不確定”).

(4)請再寫出一對符合條件的“椒江有理數(shù)對” (注意:不能與題目中已有的“椒江有理數(shù)對”重復)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2 x+c與y軸交于點A(0,﹣ ),與x軸交于B、C兩點,其對稱軸與x軸交于點D,直線l∥AB且過點D.

(1)求AB所在直線的函數(shù)表達式;
(2)請你判斷△ABD的形狀并證明你的結(jié)論;
(3)點E在線段AD上運動且與點A、D不重合,點F在直線l上運動,且∠BEF=60°,連接BF,求出△BEF面積的最小值.
解:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:=1-

解:去分母,得_________________________________

去括號,得___________________________

移項,得___________________________

合并同類項,得__________

兩邊都除以______,得x=_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,是將長方形紙牌ABCD沿著BD折疊得到的,圖中包括實線、虛線在內(nèi)共有全等三角形______

查看答案和解析>>

同步練習冊答案