【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交ABM,交ACN

1)若∠ABC=70°,則∠MNA的度數(shù)是__

2)連接NB,若AB=8cm,NBC的周長(zhǎng)是14cm

BC的長(zhǎng);

在直線MN上是否存在P,使由PB、C構(gòu)成的△PBC的周長(zhǎng)值最。咳舸嬖,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,說明理由.

【答案】50°

【解析】1)根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠ACB=70°,求得∠A=40°,根據(jù)線段的垂直平分線的性質(zhì)得出AN=BN,進(jìn)而得出∠ABN=∠A=40°,根據(jù)三角形的內(nèi)角和定理可得出∠ANB=100°,根據(jù)等腰三角形三線合一就可求得∠MNA=50°;

(2)①根據(jù)△NBC的周長(zhǎng)=BN+CN+BC=AN+NC+BC就可求得.

②根據(jù)對(duì)稱軸的性質(zhì),即可判定P就是N點(diǎn),所以△PBC的周長(zhǎng)最小值就是△NBC的周長(zhǎng).

解:(1)∵AB=AC,

∴∠ABC=∠ACB=70°,

∴∠A=40°,

∵M(jìn)N是AB的垂直平分線,

∴AN=BN,

∴∠ABN=∠A=40°,

∴∠ANB=100°,

∴∠MNA=50°;

故答案為50°.

(2)①∵AN=BN,

∴BN+CN=AN+CN=AC,

∵AB=AC=8cm

∴BN+CN=8cm,

∵△NBC的周長(zhǎng)是14cm

∴BC=14﹣8=6cm

②∵A、B關(guān)于直線MN對(duì)稱,

∴連接AC與MN的交點(diǎn)即為所求的P點(diǎn),此時(shí)P和N重合,

即△BNC的周長(zhǎng)就是△PBC的周長(zhǎng)最小值,

∴△PBC的周長(zhǎng)最小值為14cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長(zhǎng)為(3a+b) 米,寬為(2a+b)米的長(zhǎng)方形地塊,規(guī)劃部門計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像.

(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?

(2)若a=10,b=8,且每平方米造價(jià)為100元求出綠化需要多少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)中心對(duì)稱圖形的性質(zhì)可知,任何一對(duì)對(duì)應(yīng)點(diǎn)的連線的就是該中心對(duì)稱圖形的對(duì)稱中心,或兩對(duì)對(duì)應(yīng)點(diǎn)的連線的是對(duì)稱中心

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,C=90°,AB=10cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按CABC

的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求ABP的周長(zhǎng).

(2)當(dāng)t為幾秒時(shí),BP平分ABC

(3)問t為何值時(shí),BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點(diǎn)的直線分別交AB、AC于點(diǎn)D、E,且DEBC.若AB=6cm,AC=8cm,則△ADE的周長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)活動(dòng)小組的同學(xué)用紙板制作長(zhǎng)方體包裝盒,其平面展開圖和相關(guān)尺寸如下,其中陰影部分為內(nèi)部粘貼角料(單位:毫米).

(1)此長(zhǎng)方體包裝盒的體積為______立方毫米(用含x,y的式子表示).

(2)若內(nèi)部粘貼角料的面積占長(zhǎng)方體表面紙板面積的,則當(dāng)x=40,y=70時(shí),制作這樣一個(gè)長(zhǎng)方體共需要紙板多少平方毫米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省樂山市第23題)如圖1,四邊形ABCD中,B=D=90°,AB=3,BC=2,tanA=

(1)求CD邊的長(zhǎng);

(2)如圖2,將直線CD邊沿箭頭方向平移,交DA于點(diǎn)P,交CB于點(diǎn)Q (點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止),設(shè)DP=x,四邊形PQCD的面積為,求的函數(shù)關(guān)系式,并求出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O的直徑AB6,CAB延長(zhǎng)線上,BC2,若⊙C⊙O有公共點(diǎn),那么⊙C的半徑r的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BC平分∠DBE,BA分∠DBE34兩部分,若∠ABC=8°,求∠DBE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案